@@ -0,0 +1,20 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Graphs | |||
{ | |||
/// <summary> | |||
/// Lots of other functions required for Operation control flow like AddControlInput, UpdateEdge, RemoveAllControlInputs etc are not exposed via C_API and there is a C implementation of it. | |||
/// https://github.com/tensorflow/tensorflow/blob/r1.14/tensorflow/c/python_api.h | |||
/// https://github.com/tensorflow/tensorflow/blob/r1.14/tensorflow/c/python_api.cc | |||
/// | |||
/// </summary> | |||
public class python_api | |||
{ | |||
public static void UpdateEdge(Graph graph, TF_Output new_src, TF_Input dst, Status status) | |||
{ | |||
} | |||
} | |||
} |
@@ -389,6 +389,23 @@ namespace Tensorflow | |||
return _op.outputs[0]; | |||
} | |||
/// <summary> | |||
/// Returns the truth value of (x != y) element-wise. | |||
/// </summary> | |||
/// <typeparam name="Tx">The type of the x.</typeparam> | |||
/// <typeparam name="Ty">The type of the y.</typeparam> | |||
/// <param name="x">The x.</param> | |||
/// <param name="y">The y.</param> | |||
/// <param name="name">The name.</param> | |||
/// <returns></returns> | |||
public static Tensor not_equal<Tx, Ty>(Tx x, Ty y, string name = null) | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("NotEqual", name, args: new { x, y }); | |||
return _op.outputs[0]; | |||
} | |||
public static Tensor atan2(Tensor y, Tensor x, string name = null) | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("Atan2", name, args: new { y, x }); | |||
@@ -566,5 +583,18 @@ namespace Tensorflow | |||
return _op.outputs[0]; | |||
} | |||
/// <summary> | |||
/// Returns the fraction of zeros in value. | |||
/// </summary> | |||
/// <param name="value">A tensor of numeric type.</param> | |||
/// <param name="name">A name for the operation (optional).</param> | |||
/// <returns>The fraction of zeros in value, with type float32.</returns> | |||
public static Tensor zero_fraction(Tensor value, string name = null) | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("zero_fraction", name, new { value, name }); | |||
return _op.outputs[0]; | |||
} | |||
} | |||
} |
@@ -101,9 +101,57 @@ namespace Tensorflow | |||
name); | |||
} | |||
public static Tensor zero_fraction(Tensor t) | |||
/// <summary> | |||
/// Same as math_ops.count_nonzero. | |||
/// The reduction is done in dtype, which can be faster for 32-bit dtypes. | |||
/// </summary> | |||
/// <param name="input_tensor">The numeric tensor.</param> | |||
/// <param name="dtype">The reduction dtype.</param> | |||
/// <returns>number of nonzero values with type dtype</returns> | |||
private static Tensor _count_nonzero(Tensor input_tensor, TF_DataType dtype = TF_DataType.TF_INT64) | |||
{ | |||
return with(ops.name_scope("count_nonzero", "count_nonzero", new { input_tensor }), scope => | |||
{ | |||
var zero = array_ops.zeros(new NumSharp.Shape(), dtype: input_tensor.dtype); | |||
var nonzero_count = math_ops.reduce_sum( | |||
math_ops.cast(gen_math_ops.not_equal(input_tensor, zero), dtype: dtype), name: "nonzero_count"); | |||
return nonzero_count; | |||
}); | |||
} | |||
/// <summary> | |||
/// Returns the fraction of zeros in value. | |||
/// </summary> | |||
/// <param name="value">A tensor of numeric type.</param> | |||
/// <param name="name">A name for the operation (optional).</param> | |||
/// <returns>The fraction of zeros in value, with type float32.</returns> | |||
public static Tensor zero_fraction(Tensor value, string name = null) | |||
{ | |||
throw new NotImplementedException(); | |||
return with(ops.name_scope(name, "zero_fraction", new { value }), scope => | |||
{ | |||
value = ops.convert_to_tensor(value, name: "value"); | |||
Tensor size = array_ops.size(value, out_type: dtypes.int64); | |||
Func<ITensorOrOperation> fu_true = () => math_ops.cast(_count_nonzero(value, dtype: dtypes.int32)); | |||
Tensor zero_fraction_float32 = null; | |||
size = gen_math_ops.less_equal(size, dtypes.int32.max()); | |||
Tensor num_nonzero = control_flow_ops.cond( | |||
size, | |||
() => math_ops.cast(_count_nonzero(value, dtype: dtypes.int32)), | |||
() => _count_nonzero(value, dtype: dtypes.int64) | |||
); | |||
with(ops.name_scope("counts_to_fraction"), count_scope => | |||
{ | |||
var num_zero = size - num_nonzero; | |||
var num_zero_float32 = math_ops.cast(num_zero, dtype: dtypes.float32); | |||
var size_float32 = math_ops.cast(size, dtype: dtypes.float32); | |||
zero_fraction_float32 = num_zero_float32 / size_float32; | |||
}); | |||
return array_ops.identity(zero_fraction_float32, "fraction"); | |||
}); | |||
} | |||
} | |||
} |
@@ -7,8 +7,11 @@ namespace Tensorflow | |||
public static class dtypes | |||
{ | |||
public static TF_DataType int8 = TF_DataType.TF_INT8; | |||
public static TF_DataType int32 = TF_DataType.TF_INT32; | |||
public static TF_DataType int64 = TF_DataType.TF_INT64; | |||
public static TF_DataType float32 = TF_DataType.TF_FLOAT; // is that float32? | |||
public static TF_DataType float16 = TF_DataType.TF_HALF; | |||
public static TF_DataType float64 = TF_DataType.TF_DOUBLE; | |||
public static Type as_numpy_datatype(this TF_DataType type) | |||
{ | |||
@@ -126,12 +129,24 @@ namespace Tensorflow | |||
type; | |||
} | |||
public static int max(this TF_DataType type) | |||
public static long max(this TF_DataType type) | |||
{ | |||
switch (type) | |||
{ | |||
case TF_DataType.TF_INT8: | |||
return sbyte.MaxValue; | |||
case TF_DataType.TF_INT16: | |||
return short.MaxValue; | |||
case TF_DataType.TF_INT32: | |||
return int.MaxValue; | |||
case TF_DataType.TF_INT64: | |||
return long.MaxValue; | |||
case TF_DataType.TF_UINT8: | |||
return 255; | |||
return byte.MaxValue; | |||
case TF_DataType.TF_UINT16: | |||
return ushort.MaxValue; | |||
case TF_DataType.TF_UINT32: | |||
return uint.MaxValue; | |||
default: | |||
throw new NotImplementedException($"max {type.name()}"); | |||
} | |||
@@ -176,6 +176,12 @@ namespace Tensorflow | |||
else | |||
nparray = Convert.ToInt32(values); | |||
break; | |||
case "Int64": | |||
if (values.GetType().IsArray) | |||
nparray = np.array((int[])values, np_dt); | |||
else | |||
nparray = Convert.ToInt64(values); | |||
break; | |||
case "Single": | |||
if (values.GetType().IsArray) | |||
nparray = np.array((float[])values, np_dt); | |||
@@ -188,6 +188,9 @@ namespace Tensorflow | |||
{ | |||
var op_desc = graph.NewOperation(node_def.Op, node_def.Name); | |||
//TODO: Implement TF_SetDevice | |||
//if node_def.device: | |||
// c_api.TF_SetDevice(op_desc, compat.as_str(node_def.device)) | |||
// Add inputs | |||
foreach (var op_input in inputs) | |||
{ | |||
@@ -195,10 +198,7 @@ namespace Tensorflow | |||
c_api.TF_AddInputList(op_desc, op_inputs.Select(x => x._as_tf_output()).ToArray(), op_inputs.Length); | |||
else if (op_input is Tensor op_input1) | |||
{ | |||
if (op_input1.op == null) | |||
c_api.TF_AddInput(op_desc, new TF_Output(op_desc, 0)); | |||
else | |||
c_api.TF_AddInput(op_desc, op_input1._as_tf_output()); | |||
c_api.TF_AddInput(op_desc, op_input1._as_tf_output()); | |||
} | |||
else | |||
throw new NotImplementedException("_create_c_op"); | |||
@@ -23,13 +23,12 @@ namespace TensorFlowNET.UnitTest.nn_test | |||
return 1.0 - nonzeros / (double)total_elements; | |||
} | |||
[Ignore("TODO implement nn_impl.zero_fraction")] | |||
[TestMethod] | |||
public void testZeroFraction() | |||
{ | |||
var x_shape = new Shape(5, 17); | |||
var x_np = np.random.randint(0, 2, x_shape); | |||
x_np.astype(np.float32); | |||
//x_np.astype(np.float32); | |||
var y_np = this._ZeroFraction(x_np); | |||
var x_tf = constant_op.constant(x_np); | |||
@@ -41,7 +40,6 @@ namespace TensorFlowNET.UnitTest.nn_test | |||
self.assertAllClose(y_tf_np, y_np, eps); | |||
} | |||
[Ignore("TODO implement nn_impl.zero_fraction")] | |||
[TestMethod] | |||
public void testZeroFractionEmpty() | |||
{ | |||
@@ -60,7 +58,6 @@ namespace TensorFlowNET.UnitTest.nn_test | |||
self.assertAllClose(1.0, self.evaluate<NDArray>(sparsity)); | |||
} | |||
[Ignore("TODO implement nn_impl.zero_fraction")] | |||
[TestMethod] | |||
public void testZeroFraction2_27Ones() | |||
{ | |||