diff --git a/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/Pooling1DArgs.cs b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/Pooling1DArgs.cs new file mode 100644 index 00000000..9742203d --- /dev/null +++ b/src/TensorFlowNET.Core/Keras/ArgsDefinition/Pooling/Pooling1DArgs.cs @@ -0,0 +1,34 @@ +namespace Tensorflow.Keras.ArgsDefinition +{ + public class Pooling1DArgs : LayerArgs + { + /// + /// The pooling function to apply, e.g. `tf.nn.max_pool2d`. + /// + public IPoolFunction PoolFunction { get; set; } + + /// + /// specifying the size of the pooling window. + /// + public int PoolSize { get; set; } + + /// + /// specifying the strides of the pooling operation. + /// + public int Strides { + get { return _strides.HasValue ? _strides.Value : PoolSize; } + set { _strides = value; } + } + private int? _strides = null; + + /// + /// The padding method, either 'valid' or 'same'. + /// + public string Padding { get; set; } = "valid"; + + /// + /// one of `channels_last` (default) or `channels_first`. + /// + public string DataFormat { get; set; } + } +} diff --git a/src/TensorFlowNET.Keras/Layers/LayersApi.cs b/src/TensorFlowNET.Keras/Layers/LayersApi.cs index e735f81e..9b889635 100644 --- a/src/TensorFlowNET.Keras/Layers/LayersApi.cs +++ b/src/TensorFlowNET.Keras/Layers/LayersApi.cs @@ -325,6 +325,16 @@ namespace Tensorflow.Keras.Layers return input_layer.InboundNodes[0].Outputs; } + public MaxPooling1D MaxPooling1D(int? pool_size = null, + int? strides = null, + string padding = "valid") + => new MaxPooling1D(new Pooling1DArgs + { + PoolSize = pool_size ?? 2, + Strides = strides ?? (pool_size ?? 2), + Padding = padding + }); + public MaxPooling2D MaxPooling2D(TensorShape pool_size = null, TensorShape strides = null, string padding = "valid") @@ -448,6 +458,20 @@ namespace Tensorflow.Keras.Layers public GlobalAveragePooling2D GlobalAveragePooling2D() => new GlobalAveragePooling2D(new Pooling2DArgs { }); + public GlobalAveragePooling1D GlobalAveragePooling1D(string data_format = "channels_last") + => new GlobalAveragePooling1D(new Pooling1DArgs { DataFormat = data_format }); + + public GlobalAveragePooling2D GlobalAveragePooling2D(string data_format = "channels_last") + => new GlobalAveragePooling2D(new Pooling2DArgs { DataFormat = data_format }); + + public GlobalMaxPooling1D GlobalMaxPooling1D(string data_format = "channels_last") + => new GlobalMaxPooling1D(new Pooling1DArgs { DataFormat = data_format }); + + public GlobalMaxPooling2D GlobalMaxPooling2D(string data_format = "channels_last") + => new GlobalMaxPooling2D(new Pooling2DArgs { DataFormat = data_format }); + + + Activation GetActivationByName(string name) => name switch { diff --git a/src/TensorFlowNET.Keras/Layers/Pooling/GlobalAveragePooling1D.cs b/src/TensorFlowNET.Keras/Layers/Pooling/GlobalAveragePooling1D.cs new file mode 100644 index 00000000..d2442bec --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Pooling/GlobalAveragePooling1D.cs @@ -0,0 +1,23 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Keras.ArgsDefinition; + +namespace Tensorflow.Keras.Layers +{ + public class GlobalAveragePooling1D : GlobalPooling1D + { + public GlobalAveragePooling1D(Pooling1DArgs args) + : base(args) + { + } + + protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + { + if (data_format == "channels_last") + return math_ops.reduce_mean(inputs, new int[] { 1 }, false); + else + return math_ops.reduce_mean(inputs, new int[] { 2 }, false); + } + } +} diff --git a/src/TensorFlowNET.Keras/Layers/Pooling/GlobalMaxPooling1D.cs b/src/TensorFlowNET.Keras/Layers/Pooling/GlobalMaxPooling1D.cs new file mode 100644 index 00000000..c0d0d831 --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Pooling/GlobalMaxPooling1D.cs @@ -0,0 +1,23 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Keras.ArgsDefinition; + +namespace Tensorflow.Keras.Layers +{ + public class GlobalMaxPooling1D : GlobalPooling1D + { + public GlobalMaxPooling1D(Pooling1DArgs args) + : base(args) + { + } + + protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + { + if (data_format == "channels_last") + return math_ops.reduce_max(inputs, new int[] { 1 }, false); + else + return math_ops.reduce_max(inputs, new int[] { 2 }, false); + } + } +} diff --git a/src/TensorFlowNET.Keras/Layers/Pooling/GlobalMaxPooling2D.cs b/src/TensorFlowNET.Keras/Layers/Pooling/GlobalMaxPooling2D.cs new file mode 100644 index 00000000..6ab6b501 --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Pooling/GlobalMaxPooling2D.cs @@ -0,0 +1,23 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Keras.ArgsDefinition; + +namespace Tensorflow.Keras.Layers +{ + public class GlobalMaxPooling2D : GlobalPooling2D + { + public GlobalMaxPooling2D(Pooling2DArgs args) + : base(args) + { + } + + protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + { + if (data_format == "channels_last") + return math_ops.reduce_max(inputs, new int[] { 1, 2 }, false); + else + return math_ops.reduce_max(inputs, new int[] { 2, 3 }, false); + } + } +} diff --git a/src/TensorFlowNET.Keras/Layers/Pooling/GlobalPooling1D.cs b/src/TensorFlowNET.Keras/Layers/Pooling/GlobalPooling1D.cs new file mode 100644 index 00000000..04fadeeb --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Pooling/GlobalPooling1D.cs @@ -0,0 +1,23 @@ +using System; +using System.Collections.Generic; +using System.Text; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Utils; + +namespace Tensorflow.Keras.Layers +{ + public abstract class GlobalPooling1D : Layer + { + Pooling1DArgs args; + protected string data_format => args.DataFormat; + protected InputSpec input_spec; + + public GlobalPooling1D(Pooling1DArgs args) : base(args) + { + this.args = args; + args.DataFormat = conv_utils.normalize_data_format(data_format); + input_spec = new InputSpec(ndim: 3); + } + } +} diff --git a/src/TensorFlowNET.Keras/Layers/Pooling/MaxPooling1D.cs b/src/TensorFlowNET.Keras/Layers/Pooling/MaxPooling1D.cs new file mode 100644 index 00000000..c1deb9bf --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Pooling/MaxPooling1D.cs @@ -0,0 +1,14 @@ +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Operations; + +namespace Tensorflow.Keras.Layers +{ + public class MaxPooling1D : Pooling1D + { + public MaxPooling1D(Pooling1DArgs args) + : base(args) + { + args.PoolFunction = new MaxPoolFunction(); + } + } +} diff --git a/src/TensorFlowNET.Keras/Layers/Pooling/Pooling1D.cs b/src/TensorFlowNET.Keras/Layers/Pooling/Pooling1D.cs new file mode 100644 index 00000000..80b36c86 --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Pooling/Pooling1D.cs @@ -0,0 +1,62 @@ +/***************************************************************************** + Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. +******************************************************************************/ + +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Engine; +using Tensorflow.Keras.Utils; + +namespace Tensorflow.Keras.Layers +{ + public class Pooling1D : Layer + { + Pooling1DArgs args; + InputSpec input_spec; + + public Pooling1D(Pooling1DArgs args) + : base(args) + { + this.args = args; + args.Padding = conv_utils.normalize_padding(args.Padding); + args.DataFormat = conv_utils.normalize_data_format(args.DataFormat); + input_spec = new InputSpec(ndim: 3); + } + + protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) + { + int[] pool_shape; + int[] strides; + if (args.DataFormat == "channels_last") + { + pool_shape = new int[] { 1, args.PoolSize, 1 }; + strides = new int[] { 1, args.Strides, 1 }; + } + else + { + pool_shape = new int[] { 1, 1, args.PoolSize }; + strides = new int[] { 1, 1, args.Strides }; + } + + var outputs = args.PoolFunction.Apply( + inputs, + ksize: pool_shape, + strides: strides, + padding: args.Padding.ToUpper(), + data_format: conv_utils.convert_data_format(args.DataFormat, 3)); + + return outputs; + } + } +} diff --git a/test/TensorFlowNET.Keras.UnitTest/Layers/PoolingTest.cs b/test/TensorFlowNET.Keras.UnitTest/Layers/PoolingTest.cs new file mode 100644 index 00000000..8bd0055f --- /dev/null +++ b/test/TensorFlowNET.Keras.UnitTest/Layers/PoolingTest.cs @@ -0,0 +1,305 @@ +using Microsoft.VisualStudio.TestTools.UnitTesting; +using NumSharp; +using System.Linq; +using Tensorflow; +using static Tensorflow.Binding; +using static Tensorflow.KerasApi; + +namespace TensorFlowNET.Keras.UnitTest +{ + /// + /// https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/layers + /// + [TestClass] + public class PoolingTest : EagerModeTestBase + { + private NDArray input_array_1D = np.array(new float[,,] + { + {{1,2,3,3,3},{1,2,3,3,3},{1,2,3,3,3}}, + {{4,5,6,3,3},{4,5,6,3,3},{4,5,6,3,3}}, + {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}}, + {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}} + }); + + private NDArray input_array_2D = np.array(new float[,,,] + {{ + {{1,2,3,3,3},{1,2,3,3,3},{1,2,3,3,3}}, + {{4,5,6,3,3},{4,5,6,3,3},{4,5,6,3,3}}, + },{ + {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}}, + {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}} + },{ + {{1,2,3,3,3},{1,2,3,3,3},{1,2,3,3,3}}, + {{4,5,6,3,3},{4,5,6,3,3},{4,5,6,3,3}}, + },{ + {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}}, + {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}} + }}); + + [TestMethod] + public void GlobalAverage1DPoolingChannelsLast() + { + var pool = keras.layers.GlobalAveragePooling1D(); + var y = pool.Apply(input_array_1D); + + Assert.AreEqual(4, y.shape[0]); + Assert.AreEqual(5, y.shape[1]); + + var expected = np.array(new float[,] + { + {1,2,3,3,3}, + {4,5,6,3,3}, + {7,8,9,3,3}, + {7,8,9,3,3} + }); + + Assert.AreEqual(expected, y[0].numpy()); + } + + [TestMethod] + public void GlobalAverage1DPoolingChannelsFirst() + { + var pool = keras.layers.GlobalAveragePooling1D(data_format: "channels_first"); + var y = pool.Apply(input_array_1D); + + Assert.AreEqual(4, y.shape[0]); + Assert.AreEqual(3, y.shape[1]); + + var expected = np.array(new float[,] + { + {2.4f, 2.4f, 2.4f}, + {4.2f, 4.2f, 4.2f}, + {6.0f, 6.0f, 6.0f}, + {6.0f, 6.0f, 6.0f} + }); + + Assert.AreEqual(expected, y[0].numpy()); + } + + [TestMethod] + public void GlobalAverage2DPoolingChannelsLast() + { + var pool = keras.layers.GlobalAveragePooling2D(); + var y = pool.Apply(input_array_2D); + + Assert.AreEqual(4, y.shape[0]); + Assert.AreEqual(5, y.shape[1]); + + var expected = np.array(new float[,] + { + {2.5f, 3.5f, 4.5f, 3.0f, 3.0f}, + {7.0f, 8.0f, 9.0f, 3.0f, 3.0f}, + {2.5f, 3.5f, 4.5f, 3.0f, 3.0f}, + {7.0f, 8.0f, 9.0f, 3.0f, 3.0f} + }); + + Assert.AreEqual(expected, y[0].numpy()); + } + + [TestMethod] + public void GlobalAverage2DPoolingChannelsFirst() + { + var pool = keras.layers.GlobalAveragePooling2D(data_format: "channels_first"); + var y = pool.Apply(input_array_2D); + + Assert.AreEqual(4, y.shape[0]); + Assert.AreEqual(2, y.shape[1]); + + var expected = np.array(new float[,] + { + {2.4f, 4.2f}, + {6.0f, 6.0f}, + {2.4f, 4.2f}, + {6.0f, 6.0f} + }); + + Assert.AreEqual(expected, y[0].numpy()); + } + + [TestMethod] + public void GlobalMax1DPoolingChannelsLast() + { + var pool = keras.layers.GlobalMaxPooling1D(); + var y = pool.Apply(input_array_1D); + + Assert.AreEqual(4, y.shape[0]); + Assert.AreEqual(5, y.shape[1]); + + var expected = np.array(new float[,] + { + {1,2,3,3,3}, + {4,5,6,3,3}, + {7,8,9,3,3}, + {7,8,9,3,3} + }); + + Assert.AreEqual(expected, y[0].numpy()); + } + + [TestMethod] + public void GlobalMax1DPoolingChannelsFirst() + { + var pool = keras.layers.GlobalMaxPooling1D(data_format: "channels_first"); + var y = pool.Apply(input_array_1D); + + Assert.AreEqual(4, y.shape[0]); + Assert.AreEqual(3, y.shape[1]); + + var expected = np.array(new float[,] + { + {3.0f, 3.0f, 3.0f}, + {6.0f, 6.0f, 6.0f}, + {9.0f, 9.0f, 9.0f}, + {9.0f, 9.0f, 9.0f} + }); + + Assert.AreEqual(expected, y[0].numpy()); + } + + [TestMethod] + public void GlobalMax2DPoolingChannelsLast() + { + var input_array_2D = np.array(new float[,,,] + {{ + {{1,2,3,3,3},{1,2,3,3,3},{1,2,3,9,3}}, + {{4,5,6,3,3},{4,5,6,3,3},{4,5,6,3,3}}, + },{ + {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}}, + {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}} + },{ + {{1,2,3,3,3},{1,2,3,3,3},{1,2,3,3,9}}, + {{4,5,6,3,3},{4,5,6,3,3},{4,5,6,3,3}}, + },{ + {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}}, + {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}} + }}); + + var pool = keras.layers.GlobalMaxPooling2D(); + var y = pool.Apply(input_array_2D); + + Assert.AreEqual(4, y.shape[0]); + Assert.AreEqual(5, y.shape[1]); + + var expected = np.array(new float[,] + { + {4.0f, 5.0f, 6.0f, 9.0f, 3.0f}, + {7.0f, 8.0f, 9.0f, 3.0f, 3.0f}, + {4.0f, 5.0f, 6.0f, 3.0f, 9.0f}, + {7.0f, 8.0f, 9.0f, 3.0f, 3.0f} + }); + + Assert.AreEqual(expected, y[0].numpy()); + } + + [TestMethod] + public void GlobalMax2DPoolingChannelsFirst() + { + var input_array_2D = np.array(new float[,,,] + {{ + {{1,2,3,3,3},{1,2,3,3,3},{1,2,3,9,3}}, + {{4,5,6,3,3},{4,5,6,3,3},{4,5,6,3,3}}, + },{ + {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}}, + {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}} + },{ + {{1,2,3,3,3},{1,2,3,3,3},{1,2,3,3,9}}, + {{4,5,6,3,3},{4,5,6,3,3},{4,5,6,3,3}}, + },{ + {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}}, + {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}} + }}); + + var pool = keras.layers.GlobalMaxPooling2D(data_format: "channels_first"); + var y = pool.Apply(input_array_2D); + + Assert.AreEqual(4, y.shape[0]); + Assert.AreEqual(2, y.shape[1]); + + var expected = np.array(new float[,] + { + {9.0f, 6.0f}, + {9.0f, 9.0f}, + {9.0f, 6.0f}, + {9.0f, 9.0f} + }); + + Assert.AreEqual(expected, y[0].numpy()); + } + + [TestMethod, Ignore("There's an error generated from TF complaining about the shape of the pool. Needs further investigation.")] + public void Max1DPoolingChannelsLast() + { + var x = input_array_1D; + var pool = keras.layers.MaxPooling1D(pool_size:2, strides:1); + var y = pool.Apply(x); + + Assert.AreEqual(4, y.shape[0]); + Assert.AreEqual(2, y.shape[1]); + Assert.AreEqual(5, y.shape[2]); + + var expected = np.array(new float[,,] + { + {{2.0f, 2.0f, 3.0f, 3.0f, 3.0f}, + { 1.0f, 2.0f, 3.0f, 3.0f, 3.0f}}, + + {{4.0f, 5.0f, 6.0f, 3.0f, 3.0f}, + {4.0f, 5.0f, 6.0f, 3.0f, 3.0f}}, + + {{7.0f, 8.0f, 9.0f, 3.0f, 3.0f}, + {7.0f, 8.0f, 9.0f, 3.0f, 3.0f}}, + + {{7.0f, 8.0f, 9.0f, 3.0f, 3.0f}, + {7.0f, 8.0f, 9.0f, 3.0f, 3.0f}} + }); + + Assert.AreEqual(expected, y[0].numpy()); + } + + [TestMethod] + public void Max2DPoolingChannelsLast() + { + var x = np.array(new float[,,,] + {{ + {{1,2,3,3,3},{1,2,3,3,3},{1,2,3,9,3}}, + {{4,5,6,3,3},{4,5,6,3,3},{4,5,6,3,3}}, + },{ + {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}}, + {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}} + },{ + {{1,2,3,3,3},{1,2,3,3,3},{1,2,3,3,9}}, + {{4,5,6,3,3},{4,5,6,3,3},{4,5,6,3,3}}, + },{ + {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}}, + {{7,8,9,3,3},{7,8,9,3,3},{7,8,9,3,3}} + }}); + + var pool = keras.layers.MaxPooling2D(pool_size: 2, strides: 1); + var y = pool.Apply(x); + + Assert.AreEqual(4, y.shape[0]); + Assert.AreEqual(1, y.shape[1]); + Assert.AreEqual(2, y.shape[2]); + Assert.AreEqual(5, y.shape[3]); + + var expected = np.array(new float[,,,] + { + {{{4.0f, 5.0f, 6.0f, 3.0f, 3.0f}, + {4.0f, 5.0f, 6.0f, 9.0f, 3.0f}}}, + + + {{{7.0f, 8.0f, 9.0f, 3.0f, 3.0f}, + {7.0f, 8.0f, 9.0f, 3.0f, 3.0f}}}, + + + {{{4.0f, 5.0f, 6.0f, 3.0f, 3.0f}, + {4.0f, 5.0f, 6.0f, 3.0f, 9.0f}}}, + + + {{{7.0f, 8.0f, 9.0f, 3.0f, 3.0f}, + {7.0f, 8.0f, 9.0f, 3.0f, 3.0f}}} + }); + + Assert.AreEqual(expected, y[0].numpy()); + } + } +}