diff --git a/test/TensorFlowNET.UnitTest/Training/GradientDescentOptimizerTests.cs b/test/TensorFlowNET.UnitTest/Training/GradientDescentOptimizerTests.cs index d766890b..f7062f00 100644 --- a/test/TensorFlowNET.UnitTest/Training/GradientDescentOptimizerTests.cs +++ b/test/TensorFlowNET.UnitTest/Training/GradientDescentOptimizerTests.cs @@ -1,5 +1,6 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; using System; +using System.Linq; using Tensorflow; using Tensorflow.NumPy; using static Tensorflow.Binding; @@ -67,6 +68,51 @@ namespace TensorFlowNET.UnitTest.Training TestBasic(); } + private void TestMinimizeResourceVariable() where T : struct + { + var dtype = GetTypeForNumericType(); + + // train.GradientDescentOptimizer is V1 only API. + tf.Graph().as_default(); + using (var sess = self.cached_session()) + { + var var0 = tf.Variable(new[,] { { 1.0f, 2.0f } }, dtype: dtype); + var var1 = tf.Variable(new[] { 3.0 }, dtype: dtype); + var x = tf.constant(new[,] { { 4.0f }, { 5.0f } }, dtype: dtype); + + var pred = math_ops.matmul(var0, x) + var1; + var loss = pred * pred; + var sgd_op = tf.train.GradientDescentOptimizer(3.0f).minimize(loss); + + var global_variables = tf.global_variables_initializer(); + sess.run(global_variables); + + sess.run(new[] { var0, var1 }); + // Fetch params to validate initial values + self.assertAllCloseAccordingToType(new[,] { { 1.0, 2.0 } }, self.evaluate(var0)); + self.assertAllCloseAccordingToType(new[] { 3.0 }, self.evaluate(var1)); + // Run 1 step of sgd + sgd_op.run(); + // Validate updated params + var np_pred = 1.0 * 4.0 + 2.0 * 5.0 + 3.0; + var np_grad = 2 * np_pred; + self.assertAllCloseAccordingToType( + new[,] { { 1.0 - np_grad * 4.0, 2.0 - np_grad * 5.0 } }, + self.evaluate(var0)); + self.assertAllCloseAccordingToType( + new[] { 3.0 - np_grad }, + self.evaluate(var1)); + } + } + + [TestMethod] + public void TestMinimizeResourceVariable() + { + //TODO: add np.half + TestMinimizeResourceVariable(); + TestMinimizeResourceVariable(); + } + private void TestTensorLearningRate() where T : struct { var dtype = GetTypeForNumericType(); @@ -115,5 +161,72 @@ namespace TensorFlowNET.UnitTest.Training TestTensorLearningRate(); TestTensorLearningRate(); } + + public void TestGradWrtRef() where T : struct + { + var dtype = GetTypeForNumericType(); + + var graph = tf.Graph().as_default(); + using (var sess = self.cached_session()) + { + var opt = tf.train.GradientDescentOptimizer(3.0f); + var values = new[] { 1.0, 3.0 }; + var vars_ = values.Select( + v => tf.Variable(new[] { v }, dtype: dtype) as IVariableV1 + ).ToList(); + var grads_and_vars = opt.compute_gradients(tf.add(vars_[0], vars_[1]), vars_); + sess.run(tf.global_variables_initializer()); + foreach (var (grad, _) in grads_and_vars) + self.assertAllCloseAccordingToType(new[] { 1.0 }, self.evaluate(grad)); + + } + } + + [TestMethod] + public void TestGradWrtRef() + { + TestGradWrtRef(); + TestGradWrtRef(); + } + + public void TestWithGlobalStep() where T : struct + { + var dtype = GetTypeForNumericType(); + + tf.Graph().as_default(); + using (var sess = self.cached_session()) + { + var global_step = tf.Variable(0, trainable: false); + var var0 = tf.Variable(new[] { 1.0, 2.0 }, dtype: dtype); + var var1 = tf.Variable(new[] { 3.0, 4.0 }, dtype: dtype); + var grads0 = tf.constant(new[] { 0.1, 0.1 }, dtype: dtype); + var grads1 = tf.constant(new[] { 0.01, 0.01 }, dtype: dtype); + var grads_and_vars = new[] { + Tuple.Create(grads0, var0 as IVariableV1), + Tuple.Create(grads1, var1 as IVariableV1) + }; + var sgd_op = tf.train.GradientDescentOptimizer(3.0f) + .apply_gradients(grads_and_vars, global_step: global_step); + + sess.run(tf.global_variables_initializer()); + // Fetch params to validate initial values + self.assertAllCloseAccordingToType(new[] { 1.0, 2.0 }, self.evaluate(var0)); + self.assertAllCloseAccordingToType(new[] { 3.0, 4.0 }, self.evaluate(var1)); + // Run 1 step of sgd + sgd_op.run(); + // Validate updated params and global_step + self.assertAllCloseAccordingToType(new[] { 1.0 - 3.0 * 0.1, 2.0 - 3.0 * 0.1 }, self.evaluate(var0)); + self.assertAllCloseAccordingToType(new[] { 3.0 - 3.0 * 0.01, 4.0 - 3.0 * 0.01 }, self.evaluate(var1)); + Assert.AreEqual(1, self.evaluate(global_step)); + } + + } + + [TestMethod] + public void TestWithGlobalStep() + { + TestWithGlobalStep(); + TestWithGlobalStep(); + } } } diff --git a/test/Tensorflow.UnitTest/PythonTest.cs b/test/Tensorflow.UnitTest/PythonTest.cs index dff65293..1ccd39f0 100644 --- a/test/Tensorflow.UnitTest/PythonTest.cs +++ b/test/Tensorflow.UnitTest/PythonTest.cs @@ -175,8 +175,8 @@ namespace TensorFlowNET.UnitTest return 1; } - var a = (double)x; - var b = (double)y; + var a = Convert.ToDouble(x); + var b = Convert.ToDouble(y); double delta = Math.Abs(a - b); if (delta < _epsilon) @@ -187,6 +187,19 @@ namespace TensorFlowNET.UnitTest } } + public void assertAllCloseAccordingToType( + double[,] expected, + T[,] given, + double eps = 1e-6, + float float_eps = 1e-6f) + { + Assert.AreEqual(expected.GetLength(0), given.GetLength(0)); + Assert.AreEqual(expected.GetLength(1), given.GetLength(1)); + + var flattenGiven = given.Cast().ToArray(); + assertAllCloseAccordingToType(expected, flattenGiven, eps, float_eps); + } + public void assertAllCloseAccordingToType( ICollection expected, ICollection given, @@ -267,21 +280,35 @@ namespace TensorFlowNET.UnitTest { var sess = tf.get_default_session(); var ndarray = tensor.eval(sess); - if (typeof(T) == typeof(double) - || typeof(T) == typeof(float) - || typeof(T) == typeof(int)) + + if (typeof(T) == typeof(int)) + { + int i = ndarray; + result = i; + } + else if (typeof(T) == typeof(float)) + { + float f = ndarray; + result = f; + } + else if (typeof(T) == typeof(double)) { - result = Convert.ChangeType(ndarray, typeof(T)); + double d = ndarray; + result = d; } - else if (typeof(T) == typeof(double[])) + else if ( + typeof(T) == typeof(double[]) + || typeof(T) == typeof(double[,])) { result = ndarray.ToMultiDimArray(); } - else if (typeof(T) == typeof(float[])) + else if (typeof(T) == typeof(float[]) + || typeof(T) == typeof(float[,])) { result = ndarray.ToMultiDimArray(); } - else if (typeof(T) == typeof(int[])) + else if (typeof(T) == typeof(int[]) + || typeof(T) == typeof(int[,])) { result = ndarray.ToMultiDimArray(); }