diff --git a/src/TensorFlowNET.Core/APIs/tf.array.cs b/src/TensorFlowNET.Core/APIs/tf.array.cs index 4d9c3da5..b529cd31 100644 --- a/src/TensorFlowNET.Core/APIs/tf.array.cs +++ b/src/TensorFlowNET.Core/APIs/tf.array.cs @@ -140,6 +140,16 @@ namespace Tensorflow public Tensor gather(Tensor @params, Tensor indices, string name = null, int axis = 0) => array_ops.gather(@params, indices, name: name, axis: ops.convert_to_tensor(axis)); + /// + /// Gather slices from `params` into a Tensor with shape specified by `indices`. + /// + /// + /// + /// + /// + public Tensor gather_nd(Tensor @params, Tensor indices, string name = null) + => gen_array_ops.gather_nd(@params, indices, name: name); + /// /// Return the elements, either from `x` or `y`, depending on the `condition`. /// diff --git a/src/TensorFlowNET.Core/Gradients/array_grad.cs b/src/TensorFlowNET.Core/Gradients/array_grad.cs index 016e4f02..a4da60ee 100644 --- a/src/TensorFlowNET.Core/Gradients/array_grad.cs +++ b/src/TensorFlowNET.Core/Gradients/array_grad.cs @@ -403,7 +403,26 @@ namespace Tensorflow.Gradients input_grad.set_shape(op.inputs[0].GetShape()); } return new Tensor[] { input_grad, null }; + } + [RegisterGradient("GatherNd")] + public static Tensor[] _GatherNdGrad(Operation op, Tensor[] grads) + { + var @ref = op.inputs[0]; + var indices = op.inputs[1]; + var grad = grads[0]; + var ref_shape = array_ops.shape(@ref, out_type: indices.dtype); + Tensor ref_grad = null; + if (indices.shape.ndim == 2 && indices.shape.dims[indices.shape.Length - 1] == 1) + { + ref_grad = (Tensor)new IndexedSlices(grad, array_ops.squeeze(indices, axis: -1), ref_shape); + } + else + { + ref_grad = gen_array_ops.scatter_nd(indices, grad, ref_shape); + } + return new Tensor[] { ref_grad, null }; } + } } diff --git a/src/TensorFlowNET.Core/Operations/array_ops.cs b/src/TensorFlowNET.Core/Operations/array_ops.cs index abf44c64..57af3b83 100644 --- a/src/TensorFlowNET.Core/Operations/array_ops.cs +++ b/src/TensorFlowNET.Core/Operations/array_ops.cs @@ -829,7 +829,7 @@ namespace Tensorflow /// A `Tensor`. Has the same type as `input`. /// Contains the same data as `input`, but has one or more dimensions of /// size 1 removed. - public static Tensor squeeze(Tensor input, int[] axis = null, string name = null) + public static Tensor squeeze(Tensor input, Axis axis = null, string name = null) => gen_array_ops.squeeze(input, axis, name); public static Tensor identity(Tensor input, string name = null) diff --git a/test/TensorFlowNET.UnitTest/GradientTest/GradientEagerTest.cs b/test/TensorFlowNET.UnitTest/GradientTest/GradientEagerTest.cs index ed759904..1cfceb3e 100644 --- a/test/TensorFlowNET.UnitTest/GradientTest/GradientEagerTest.cs +++ b/test/TensorFlowNET.UnitTest/GradientTest/GradientEagerTest.cs @@ -62,7 +62,7 @@ namespace TensorFlowNET.UnitTest.Gradient // Calcute the gradient of (x1-x2)^2 // by Automatic Differentiation in Eager mode // Expected is 2*(abs(x1-x2)) - Tensor x1 = new NDArray( new float[] { 1, 3, 5, 21, 19, 17 }); + Tensor x1 = new NDArray(new float[] { 1, 3, 5, 21, 19, 17 }); Tensor x2 = new NDArray(new float[] { 29, 27, 23, 7, 11, 13 }); float[] expected = new float[] { @@ -187,5 +187,20 @@ namespace TensorFlowNET.UnitTest.Gradient Assert.AreEqual((float)grad.numpy(), 2.0f); } } + + [TestMethod] + public void GatherNdTest() + { + var x = tf.constant(new float[,] { { 1.0f, 2.0f, 3.0f }, { 1.0f, 2.0f, 3.0f }, { 1.0f, 2.0f, 3.0f } }, dtype: TF_DataType.TF_FLOAT); + var indices = tf.constant(new int[,] { { 0, 1 }, { 1, 1 }, { 2, 1 } }, dtype: TF_DataType.TF_INT32); + using (var tape = tf.GradientTape()) + { + tape.watch(x); + var res = tf.gather_nd(x, indices); + var grad = tape.gradient(res, x); + var expected = np.array(new float[,] { { 0f, 1f, 0f }, { 0f, 1f, 0f }, { 0f, 1f, 0f } }); + Assert.IsTrue(Enumerable.SequenceEqual(grad.ToArray(), expected.ToArray())); + } + } } }