|
|
@@ -6,6 +6,7 @@ using System.Collections; |
|
|
|
using System.Linq; |
|
|
|
using Tensorflow; |
|
|
|
using static Tensorflow.Binding; |
|
|
|
using System.Collections.Generic; |
|
|
|
|
|
|
|
namespace TensorFlowNET.UnitTest |
|
|
|
{ |
|
|
@@ -144,6 +145,40 @@ namespace TensorFlowNET.UnitTest |
|
|
|
Assert.IsTrue(np.allclose(array1, array2, rtol: eps)); |
|
|
|
} |
|
|
|
|
|
|
|
private class CollectionComparer : IComparer |
|
|
|
{ |
|
|
|
private readonly double _epsilon; |
|
|
|
|
|
|
|
public CollectionComparer(double eps = 1e-06) |
|
|
|
{ |
|
|
|
_epsilon = eps; |
|
|
|
} |
|
|
|
public int Compare(object x, object y) |
|
|
|
{ |
|
|
|
var a = (double)x; |
|
|
|
var b = (double)y; |
|
|
|
|
|
|
|
double delta = Math.Abs(a - b); |
|
|
|
if (delta < _epsilon) |
|
|
|
{ |
|
|
|
return 0; |
|
|
|
} |
|
|
|
return a.CompareTo(b); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
public void assertAllCloseAccordingToType<T>( |
|
|
|
ICollection expected, |
|
|
|
ICollection<T> given, |
|
|
|
double eps = 1e-6, |
|
|
|
float float_eps = 1e-6f) |
|
|
|
{ |
|
|
|
// TODO: check if any of arguments is not double and change toletance |
|
|
|
// remove givenAsDouble and cast expected instead |
|
|
|
var givenAsDouble = given.Select(x => Convert.ToDouble(x)).ToArray(); |
|
|
|
CollectionAssert.AreEqual(expected, givenAsDouble, new CollectionComparer(eps)); |
|
|
|
} |
|
|
|
|
|
|
|
public void assertProtoEquals(object toProto, object o) |
|
|
|
{ |
|
|
|
throw new NotImplementedException(); |
|
|
@@ -153,6 +188,20 @@ namespace TensorFlowNET.UnitTest |
|
|
|
|
|
|
|
#region tensor evaluation and test session |
|
|
|
|
|
|
|
private Session _cached_session = null; |
|
|
|
private Graph _cached_graph = null; |
|
|
|
private object _cached_config = null; |
|
|
|
private bool _cached_force_gpu = false; |
|
|
|
|
|
|
|
private void _ClearCachedSession() |
|
|
|
{ |
|
|
|
if (self._cached_session != null) |
|
|
|
{ |
|
|
|
self._cached_session.Dispose(); |
|
|
|
self._cached_session = null; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
//protected object _eval_helper(Tensor[] tensors) |
|
|
|
//{ |
|
|
|
// if (tensors == null) |
|
|
@@ -196,17 +245,25 @@ namespace TensorFlowNET.UnitTest |
|
|
|
// return self._eval_helper(tensors) |
|
|
|
// else: |
|
|
|
{ |
|
|
|
var sess = tf.Session(); |
|
|
|
var sess = tf.get_default_session(); |
|
|
|
var ndarray = tensor.eval(sess); |
|
|
|
if (typeof(T) == typeof(double)) |
|
|
|
if (typeof(T) == typeof(double) |
|
|
|
|| typeof(T) == typeof(float) |
|
|
|
|| typeof(T) == typeof(int)) |
|
|
|
{ |
|
|
|
result = Convert.ChangeType(ndarray, typeof(T)); |
|
|
|
} |
|
|
|
else if (typeof(T) == typeof(double[])) |
|
|
|
{ |
|
|
|
result = ndarray.ToMultiDimArray<double>(); |
|
|
|
} |
|
|
|
else if (typeof(T) == typeof(float[])) |
|
|
|
{ |
|
|
|
double x = ndarray; |
|
|
|
result = x; |
|
|
|
result = ndarray.ToMultiDimArray<float>(); |
|
|
|
} |
|
|
|
else if (typeof(T) == typeof(int)) |
|
|
|
else if (typeof(T) == typeof(int[])) |
|
|
|
{ |
|
|
|
int x = ndarray; |
|
|
|
result = x; |
|
|
|
result = ndarray.ToMultiDimArray<int>(); |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
@@ -218,9 +275,56 @@ namespace TensorFlowNET.UnitTest |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
public Session cached_session() |
|
|
|
///Returns a TensorFlow Session for use in executing tests. |
|
|
|
public Session cached_session( |
|
|
|
Graph graph = null, object config = null, bool use_gpu = false, bool force_gpu = false) |
|
|
|
{ |
|
|
|
throw new NotImplementedException(); |
|
|
|
// This method behaves differently than self.session(): for performance reasons |
|
|
|
// `cached_session` will by default reuse the same session within the same |
|
|
|
// test.The session returned by this function will only be closed at the end |
|
|
|
// of the test(in the TearDown function). |
|
|
|
|
|
|
|
// Use the `use_gpu` and `force_gpu` options to control where ops are run.If |
|
|
|
// `force_gpu` is True, all ops are pinned to `/ device:GPU:0`. Otherwise, if |
|
|
|
// `use_gpu` is True, TensorFlow tries to run as many ops on the GPU as |
|
|
|
// possible.If both `force_gpu and `use_gpu` are False, all ops are pinned to |
|
|
|
// the CPU. |
|
|
|
|
|
|
|
// Example: |
|
|
|
// python |
|
|
|
// class MyOperatorTest(test_util.TensorFlowTestCase) : |
|
|
|
// def testMyOperator(self): |
|
|
|
// with self.cached_session() as sess: |
|
|
|
// valid_input = [1.0, 2.0, 3.0, 4.0, 5.0] |
|
|
|
// result = MyOperator(valid_input).eval() |
|
|
|
// self.assertEqual(result, [1.0, 2.0, 3.0, 5.0, 8.0] |
|
|
|
// invalid_input = [-1.0, 2.0, 7.0] |
|
|
|
// with self.assertRaisesOpError("negative input not supported"): |
|
|
|
// MyOperator(invalid_input).eval() |
|
|
|
|
|
|
|
|
|
|
|
// Args: |
|
|
|
// graph: Optional graph to use during the returned session. |
|
|
|
// config: An optional config_pb2.ConfigProto to use to configure the |
|
|
|
// session. |
|
|
|
// use_gpu: If True, attempt to run as many ops as possible on GPU. |
|
|
|
// force_gpu: If True, pin all ops to `/device:GPU:0`. |
|
|
|
|
|
|
|
// Yields: |
|
|
|
// A Session object that should be used as a context manager to surround |
|
|
|
// the graph building and execution code in a test case. |
|
|
|
|
|
|
|
|
|
|
|
// TODO: |
|
|
|
// if context.executing_eagerly(): |
|
|
|
// return self._eval_helper(tensors) |
|
|
|
// else: |
|
|
|
{ |
|
|
|
var sess = self._get_cached_session( |
|
|
|
graph, config, force_gpu, crash_if_inconsistent_args: true); |
|
|
|
using var cached = self._constrain_devices_and_set_default(sess, use_gpu, force_gpu); |
|
|
|
return cached; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
//Returns a TensorFlow Session for use in executing tests. |
|
|
@@ -268,6 +372,40 @@ namespace TensorFlowNET.UnitTest |
|
|
|
return s.as_default(); |
|
|
|
} |
|
|
|
|
|
|
|
private Session _constrain_devices_and_set_default(Session sess, bool use_gpu, bool force_gpu) |
|
|
|
{ |
|
|
|
// Set the session and its graph to global default and constrain devices.""" |
|
|
|
if (tf.executing_eagerly()) |
|
|
|
return null; |
|
|
|
else |
|
|
|
{ |
|
|
|
sess.graph.as_default(); |
|
|
|
sess.as_default(); |
|
|
|
{ |
|
|
|
if (force_gpu) |
|
|
|
{ |
|
|
|
// TODO: |
|
|
|
|
|
|
|
// Use the name of an actual device if one is detected, or |
|
|
|
// '/device:GPU:0' otherwise |
|
|
|
/* var gpu_name = gpu_device_name(); |
|
|
|
if (!gpu_name) |
|
|
|
gpu_name = "/device:GPU:0" |
|
|
|
using (sess.graph.device(gpu_name)) { |
|
|
|
yield return sess; |
|
|
|
}*/ |
|
|
|
return sess; |
|
|
|
} |
|
|
|
else if (use_gpu) |
|
|
|
return sess; |
|
|
|
else |
|
|
|
using (sess.graph.device("/device:CPU:0")) |
|
|
|
return sess; |
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// See session() for details. |
|
|
|
private Session _create_session(Graph graph, object cfg, bool forceGpu) |
|
|
|
{ |
|
|
@@ -312,6 +450,54 @@ namespace TensorFlowNET.UnitTest |
|
|
|
return new Session(graph);//, config = prepare_config(config)) |
|
|
|
} |
|
|
|
|
|
|
|
private Session _get_cached_session( |
|
|
|
Graph graph = null, |
|
|
|
object config = null, |
|
|
|
bool force_gpu = false, |
|
|
|
bool crash_if_inconsistent_args = true) |
|
|
|
{ |
|
|
|
// See cached_session() for documentation. |
|
|
|
if (self._cached_session == null) |
|
|
|
{ |
|
|
|
var sess = self._create_session(graph, config, force_gpu); |
|
|
|
self._cached_session = sess; |
|
|
|
self._cached_graph = graph; |
|
|
|
self._cached_config = config; |
|
|
|
self._cached_force_gpu = force_gpu; |
|
|
|
return sess; |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
|
|
|
|
if (crash_if_inconsistent_args && self._cached_graph != null && !self._cached_graph.Equals(graph)) |
|
|
|
throw new ValueError(@"The graph used to get the cached session is |
|
|
|
different than the one that was used to create the |
|
|
|
session. Maybe create a new session with |
|
|
|
self.session()"); |
|
|
|
if (crash_if_inconsistent_args && self._cached_config != null && !self._cached_config.Equals(config)) |
|
|
|
{ |
|
|
|
throw new ValueError(@"The config used to get the cached session is |
|
|
|
different than the one that was used to create the |
|
|
|
session. Maybe create a new session with |
|
|
|
self.session()"); |
|
|
|
} |
|
|
|
if (crash_if_inconsistent_args && !self._cached_force_gpu.Equals(force_gpu)) |
|
|
|
{ |
|
|
|
throw new ValueError(@"The force_gpu value used to get the cached session is |
|
|
|
different than the one that was used to create the |
|
|
|
session. Maybe create a new session with |
|
|
|
self.session()"); |
|
|
|
} |
|
|
|
return _cached_session; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
[TestCleanup] |
|
|
|
public void Cleanup() |
|
|
|
{ |
|
|
|
_ClearCachedSession(); |
|
|
|
} |
|
|
|
|
|
|
|
#endregion |
|
|
|
|
|
|
|
public void AssetSequenceEqual<T>(T[] a, T[] b) |
|
|
|