|
|
@@ -73,6 +73,8 @@ namespace TensorFlowNET.Examples.ImageProcess |
|
|
|
float accuracy_test = 0f; |
|
|
|
float loss_test = 1f; |
|
|
|
|
|
|
|
NDArray x_train; |
|
|
|
|
|
|
|
public bool Run() |
|
|
|
{ |
|
|
|
PrepareData(); |
|
|
@@ -241,11 +243,19 @@ namespace TensorFlowNET.Examples.ImageProcess |
|
|
|
public void PrepareData() |
|
|
|
{ |
|
|
|
mnist = MNIST.read_data_sets("mnist", one_hot: true); |
|
|
|
x_train = Reformat(mnist.train.data, mnist.train.labels); |
|
|
|
print("Size of:"); |
|
|
|
print($"- Training-set:\t\t{len(mnist.train.data)}"); |
|
|
|
print($"- Validation-set:\t{len(mnist.validation.data)}"); |
|
|
|
} |
|
|
|
|
|
|
|
private NDArray Reformat(NDArray x, NDArray y) |
|
|
|
{ |
|
|
|
var (img_size, num_ch, num_class) = (np.sqrt(x.shape[1]), 1, np.unique<int>(np.argmax(y, 1))); |
|
|
|
|
|
|
|
return x; |
|
|
|
} |
|
|
|
|
|
|
|
public void Train(Session sess) |
|
|
|
{ |
|
|
|
// Number of training iterations in each epoch |
|
|
|