@@ -57,6 +57,21 @@ namespace Tensorflow | |||
new[] { loop_vars }); | |||
return results[0]; | |||
} | |||
public (Tensor, List<TensorArray>, Tensors, Tensors) while_loop(Func<Tensor, Tensor> cond, | |||
Func<Tensor, List<TensorArray>, Tensors, Tensors, (Tensor, List<TensorArray>, Tensors, Tensors)> body, | |||
(Tensor, List<TensorArray>, Tensors, Tensors) loop_vars, | |||
int parallel_iterations = 10) | |||
=> control_flow_ops.while_loop(cond, | |||
body, | |||
loop_vars); | |||
public (Tensor, List<TensorArray>, Tensors) while_loop(Func<Tensor, Tensor> cond, | |||
Func<Tensor, List<TensorArray>, Tensors, (Tensor, List<TensorArray>, Tensors)> body, | |||
(Tensor, List<TensorArray>, Tensors) loop_vars, | |||
int parallel_iterations = 10) | |||
=> control_flow_ops.while_loop(cond, | |||
body, | |||
loop_vars); | |||
public Tensor[] while_loop(Func<Tensor[], Tensor> cond, | |||
Func<Tensor[], Tensor[]> body, | |||
@@ -1,17 +1,36 @@ | |||
using Newtonsoft.Json; | |||
using OneOf; | |||
using System.Collections.Generic; | |||
<<<<<<< HEAD | |||
using Tensorflow.Keras.Layers.Rnn; | |||
======= | |||
using Tensorflow.Keras.Layers; | |||
using Tensorflow.Keras.ArgsDefinition.Rnn; | |||
using Tensorflow.NumPy; | |||
>>>>>>> master | |||
namespace Tensorflow.Keras.ArgsDefinition.Rnn | |||
{ | |||
// TODO(Rinne): add regularizers. | |||
public class RNNArgs : AutoSerializeLayerArgs | |||
{ | |||
<<<<<<< HEAD | |||
[JsonProperty("cell")] | |||
// TODO: the cell should be serialized with `serialize_keras_object`. | |||
public IRnnCell Cell { get; set; } = null; | |||
[JsonProperty("cells")] | |||
public IList<IRnnCell> Cells { get; set; } = null; | |||
======= | |||
public interface IRnnArgCell : ILayer | |||
{ | |||
public Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null); | |||
public StateSizeWrapper state_size { get; set; } | |||
public int output_size { get; set; } | |||
} | |||
[JsonProperty("cell")] | |||
// TODO: the cell should be serialized with `serialize_keras_object`. | |||
public OneOf<IList<IRnnArgCell>, IRnnArgCell> Cell { get; set; } | |||
>>>>>>> master | |||
[JsonProperty("return_sequences")] | |||
public bool ReturnSequences { get; set; } = false; | |||
@@ -26,6 +45,7 @@ namespace Tensorflow.Keras.ArgsDefinition.Rnn | |||
[JsonProperty("time_major")] | |||
public bool TimeMajor { get; set; } = false; | |||
// TODO: Add `num_constants` and `zero_output_for_mask`. | |||
public bool ZeroOutputForMask { get; set; } = false; | |||
public Dictionary<string, object> Kwargs { get; set; } = null; | |||
public int Units { get; set; } | |||
@@ -2,6 +2,9 @@ | |||
{ | |||
public class SimpleRNNArgs : RNNArgs | |||
{ | |||
public float Dropout = 0f; | |||
public float RecurrentDropout = 0f; | |||
public int state_size; | |||
public int output_size; | |||
} | |||
} |
@@ -1,11 +1,19 @@ | |||
using System.Collections.Generic; | |||
<<<<<<< HEAD | |||
using Tensorflow.Keras.Layers.Rnn; | |||
======= | |||
using static Tensorflow.Keras.ArgsDefinition.Rnn.RNNArgs; | |||
>>>>>>> master | |||
namespace Tensorflow.Keras.ArgsDefinition.Rnn | |||
{ | |||
public class StackedRNNCellsArgs : LayerArgs | |||
{ | |||
<<<<<<< HEAD | |||
public IList<IRnnCell> Cells { get; set; } | |||
======= | |||
public IList<IRnnArgCell> Cells { get; set; } | |||
>>>>>>> master | |||
public Dictionary<string, object> Kwargs { get; set; } = null; | |||
} | |||
} |
@@ -28,5 +28,11 @@ namespace Tensorflow.Keras | |||
TF_DataType DType { get; } | |||
int count_params(); | |||
void adapt(Tensor data, int? batch_size = null, int? steps = null); | |||
Tensors Call(Tensors inputs, Tensor? mask = null, bool? training = null, Tensors? initial_state = null, Tensors? constants = null); | |||
StateSizeWrapper state_size { get; } | |||
int output_size { get; } | |||
} | |||
} |
@@ -226,6 +226,7 @@ namespace Tensorflow.Keras.Layers | |||
bool return_sequences = false, | |||
bool return_state = false); | |||
<<<<<<< HEAD | |||
public ILayer RNN( | |||
IRnnCell cell, | |||
bool return_sequences = false, | |||
@@ -245,6 +246,17 @@ namespace Tensorflow.Keras.Layers | |||
bool unroll = false, | |||
bool time_major = false | |||
); | |||
======= | |||
public ILayer SimpleRNNCell( | |||
int units, | |||
string activation = "tanh", | |||
bool use_bias = true, | |||
string kernel_initializer = "glorot_uniform", | |||
string recurrent_initializer = "orthogonal", | |||
string bias_initializer = "zeros", | |||
float dropout = 0f, | |||
float recurrent_dropout = 0f); | |||
>>>>>>> master | |||
public ILayer Subtract(); | |||
} | |||
@@ -0,0 +1,63 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using System.Collections; | |||
namespace Tensorflow.NumPy | |||
{ | |||
// Since state_size in RNN is a single integer or array of integer, so use StateSizeWrapper to hold it | |||
public class StateSizeWrapper : IEnumerable<int> | |||
{ | |||
int[] _state_size; | |||
public int[] state_size => _state_size; | |||
public StateSizeWrapper(int state_size) | |||
{ | |||
_state_size = new int[] { state_size }; | |||
} | |||
public StateSizeWrapper(params int[] state_size) | |||
{ | |||
_state_size = state_size; | |||
} | |||
public StateSizeWrapper(IEnumerable<int> state_size) | |||
{ | |||
_state_size = state_size.ToArray(); | |||
} | |||
public static implicit operator StateSizeWrapper(int[] state_size) | |||
=> new StateSizeWrapper(state_size); | |||
public static implicit operator StateSizeWrapper(int state_size) | |||
=> new StateSizeWrapper(state_size); | |||
public static implicit operator StateSizeWrapper((int, int) state_size) | |||
=> new StateSizeWrapper(state_size.Item1, state_size.Item2); | |||
public static implicit operator StateSizeWrapper(List<int> v) | |||
=> new StateSizeWrapper(v); | |||
public override string ToString() | |||
{ | |||
return $"{state_size}"; | |||
} | |||
public int this[int n] | |||
{ | |||
get => n < 0 ? state_size[state_size.Length + n] : state_size[n]; | |||
set => state_size[n] = value; | |||
} | |||
public IEnumerator<int> GetEnumerator() | |||
{ | |||
return state_size.ToList().GetEnumerator(); | |||
} | |||
IEnumerator IEnumerable.GetEnumerator() | |||
{ | |||
return GetEnumerator(); | |||
} | |||
} | |||
} | |||
@@ -28,6 +28,7 @@ using Tensorflow.Operations; | |||
using Tensorflow.Train; | |||
using Tensorflow.Util; | |||
using static Tensorflow.Binding; | |||
using static Tensorflow.Keras.ArgsDefinition.Rnn.RNNArgs; | |||
namespace Tensorflow | |||
{ | |||
@@ -52,8 +53,12 @@ namespace Tensorflow | |||
/// matching structure of Tensors having shape `[batch_size].concatenate(s)` | |||
/// for each `s` in `self.batch_size`. | |||
/// </summary> | |||
<<<<<<< HEAD | |||
[Obsolete("This is an incompleted tf v1 api, pleas use keras RNNs instead.")] | |||
public abstract class RnnCell : ILayer, IRnnCell | |||
======= | |||
public abstract class RnnCell : ILayer | |||
>>>>>>> master | |||
{ | |||
/// <summary> | |||
/// Attribute that indicates whether the cell is a TF RNN cell, due the slight | |||
@@ -91,6 +96,8 @@ namespace Tensorflow | |||
protected bool built = false; | |||
public bool Built => built; | |||
StateSizeWrapper ILayer.state_size => throw new NotImplementedException(); | |||
public RnnCell(bool trainable = true, | |||
string name = null, | |||
TF_DataType dtype = TF_DataType.DtInvalid, | |||
@@ -177,6 +184,7 @@ namespace Tensorflow | |||
throw new NotImplementedException(); | |||
} | |||
<<<<<<< HEAD | |||
public (Tensor, Tensors) Call(Tensors inputs, Tensors states, bool? training = null) | |||
{ | |||
throw new NotImplementedException(); | |||
@@ -185,5 +193,11 @@ namespace Tensorflow | |||
public GeneralizedTensorShape OutputSize => throw new NotImplementedException(); | |||
public bool IsTFRnnCell => throw new NotImplementedException(); | |||
public bool SupportOptionalArgs => throw new NotImplementedException(); | |||
======= | |||
public Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
>>>>>>> master | |||
} | |||
} |
@@ -698,6 +698,53 @@ namespace Tensorflow | |||
}); | |||
} | |||
public static (Tensor, List<TensorArray>, Tensors, Tensors) while_loop(Func<Tensor, Tensor> cond, | |||
Func<Tensor, List<TensorArray>, Tensors, Tensors, (Tensor, List<TensorArray>, Tensors, Tensors)> body, | |||
(Tensor, List<TensorArray>, Tensors, Tensors) loop_vars, | |||
int parallel_iterations = 10, | |||
string name = null) | |||
{ | |||
var executing_eagerly = tf.Context.executing_eagerly(); | |||
if (!executing_eagerly) | |||
{ | |||
throw new NotImplementedException(""); | |||
} | |||
return tf_with(ops.name_scope("name", "while"), delegate | |||
{ | |||
while ((bool)cond(loop_vars.Item1)) | |||
{ | |||
loop_vars = body(loop_vars.Item1, loop_vars.Item2, loop_vars.Item3, loop_vars.Item4); | |||
} | |||
return loop_vars; | |||
}); | |||
} | |||
public static (Tensor, List<TensorArray>, Tensors) while_loop(Func<Tensor, Tensor> cond, | |||
Func<Tensor, List<TensorArray>, Tensors, (Tensor, List<TensorArray>, Tensors)> body, | |||
(Tensor, List<TensorArray>, Tensors) loop_vars, | |||
int parallel_iterations = 10, | |||
string name = null) | |||
{ | |||
var executing_eagerly = tf.Context.executing_eagerly(); | |||
if (!executing_eagerly) | |||
{ | |||
throw new NotImplementedException(""); | |||
} | |||
return tf_with(ops.name_scope("name", "while"), delegate | |||
{ | |||
while ((bool)cond(loop_vars.Item1)) | |||
{ | |||
loop_vars = body(loop_vars.Item1, loop_vars.Item2, loop_vars.Item3); | |||
} | |||
return loop_vars; | |||
}); | |||
} | |||
/// <summary> | |||
/// Repeat `body` while the condition `cond` is true. | |||
/// </summary> | |||
@@ -4633,8 +4633,9 @@ public static class gen_math_ops | |||
var _fast_path_result = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo(_ctx, "MatMul", name) { args = new object[] { a, b }, attrs = new Dictionary<string, object>() { ["transpose_a"] = transpose_a, ["transpose_b"] = transpose_b } }); | |||
return _fast_path_result[0]; | |||
} | |||
catch (Exception) | |||
catch (ArgumentException) | |||
{ | |||
throw new ArgumentException("In[0] and In[1] has diffrent ndims!"); | |||
} | |||
try | |||
{ | |||
@@ -19,6 +19,7 @@ using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Linq; | |||
using System.Runtime.CompilerServices; | |||
namespace Tensorflow.Util | |||
{ | |||
@@ -212,6 +213,39 @@ namespace Tensorflow.Util | |||
=> arg is IEnumerable && !(arg is string) && !(arg is NDArray) && | |||
!(arg.GetType().IsGenericType && arg.GetType().GetGenericTypeDefinition() == typeof(HashSet<>)); | |||
public static bool is_nested(object obj) | |||
{ | |||
// Refer to https://www.tensorflow.org/api_docs/python/tf/nest | |||
//if (obj is IList || obj is IDictionary || obj is ITuple) | |||
// return true; | |||
if (obj is IList || obj is IDictionary) | |||
return true; | |||
if (obj is NDArray || obj is Tensor || obj is string || obj.GetType().IsGenericType | |||
|| obj is ISet<int> || obj is ISet<float> || obj is ISet<double>) | |||
return false; | |||
if (obj.GetType().IsNested) return true; | |||
// Check if the object is an IEnumerable | |||
if (obj is IEnumerable) | |||
{ | |||
// If it is, check if it is a nested structure | |||
foreach (object item in (IEnumerable)obj) | |||
{ | |||
if (is_nested(item)) | |||
{ | |||
return true; | |||
} | |||
} | |||
return true; | |||
} | |||
else | |||
{ | |||
// If it is not, return false | |||
return false; | |||
} | |||
} | |||
public static bool is_mapping(object arg) => arg is IDictionary; | |||
//# See the swig file (util.i) for documentation. | |||
@@ -223,7 +257,13 @@ namespace Tensorflow.Util | |||
_flatten_recursive(structure, list); | |||
return list; | |||
} | |||
// TODO(Wanglongzhi2001), ITuple must used in .NET standard 2.1, but now is 2.0 | |||
// If you want to flatten a nested tuple, please specify the type of the tuple | |||
//public static List<T> flatten<T>(ITuple structure) | |||
//{ | |||
// var list = FlattenTuple<T>(structure).ToList(); | |||
// return list; | |||
//} | |||
public static List<T> flatten<T>(IEnumerable<T> structure) | |||
{ | |||
var list = new List<T>(); | |||
@@ -251,9 +291,13 @@ namespace Tensorflow.Util | |||
case String str: | |||
list.Add(obj); | |||
break; | |||
case NDArray nd: | |||
// This case can hold both Tensor and NDArray | |||
case Tensor tensor: | |||
list.Add(obj); | |||
break; | |||
//case NDArray nd: | |||
// list.Add(obj); | |||
// break; | |||
case IEnumerable structure: | |||
foreach (var child in structure) | |||
_flatten_recursive((T)child, list); | |||
@@ -264,7 +308,27 @@ namespace Tensorflow.Util | |||
} | |||
} | |||
private static IEnumerable<T> FlattenTuple<T>(object tuple) | |||
{ | |||
//if (tuple is ITuple t) | |||
//{ | |||
// for (int i = 0; i < t.Length; i++) | |||
// { | |||
// foreach (var item in FlattenTuple<T>(t[i])) | |||
// { | |||
// yield return item; | |||
// } | |||
// } | |||
//} | |||
if(false) | |||
{ | |||
} | |||
else | |||
{ | |||
yield return (T)tuple; | |||
} | |||
} | |||
//# See the swig file (util.i) for documentation. | |||
//_same_namedtuples = _pywrap_tensorflow.SameNamedtuples | |||
@@ -451,8 +515,12 @@ namespace Tensorflow.Util | |||
throw new ArgumentException("flat_sequence must not be null"); | |||
// if not is_sequence(flat_sequence): | |||
// raise TypeError("flat_sequence must be a sequence") | |||
if (!is_sequence(structure)) | |||
if (!is_nested(flat_sequence)) | |||
{ | |||
throw new ArrayTypeMismatchException($"Attempted to pack value:\\n {flat_sequence}\\ninto a structure, " + | |||
$"but found incompatible type `{flat_sequence.GetType()}` instead."); | |||
} | |||
if (!is_nested(structure)) | |||
{ | |||
if (len(flat) != 1) | |||
throw new ValueError($"Structure is a scalar but len(flat_sequence) == {len(flat)} > 1"); | |||
@@ -24,7 +24,12 @@ using Tensorflow.Common.Extensions; | |||
using static Tensorflow.Binding; | |||
using static Tensorflow.Graphs.SubGraphUtility; | |||
using Tensorflow.Util; | |||
<<<<<<< HEAD | |||
using Tensorflow.Common.Types; | |||
======= | |||
using Tensorflow.Operations; | |||
using OneOf; | |||
>>>>>>> master | |||
namespace Tensorflow.Keras | |||
{ | |||
@@ -68,7 +73,7 @@ namespace Tensorflow.Keras | |||
return; | |||
} | |||
var graph = v.Graph; | |||
if(graph is null) | |||
if (graph is null) | |||
{ | |||
graph = get_graph(); | |||
} | |||
@@ -98,7 +103,7 @@ namespace Tensorflow.Keras | |||
{ | |||
if (_GRAPH == null) | |||
_GRAPH = new FuncGraph("keras_graph"); | |||
return _GRAPH; | |||
} | |||
return ops.get_default_graph(); | |||
@@ -108,7 +113,7 @@ namespace Tensorflow.Keras | |||
{ | |||
if (_CURRENT_SCRATCH_GRAPH == null) | |||
_CURRENT_SCRATCH_GRAPH = new FuncGraph("keras_scratch_graph"); | |||
return _CURRENT_SCRATCH_GRAPH; | |||
} | |||
@@ -233,16 +238,16 @@ namespace Tensorflow.Keras | |||
{ | |||
if (outputs[0].op.type == "Const") | |||
return tensor_util.constant_value(outputs); | |||
var source_graph = outputs.graph; | |||
var exec_graph = _scratch_graph(); | |||
var global_graph = get_graph(); | |||
if (source_graph == global_graph && exec_graph != global_graph) | |||
{ | |||
var lifted_map = lift_to_graph(outputs, exec_graph, | |||
new List<Tensor>(), | |||
add_sources: true, | |||
handle_captures: true, | |||
var lifted_map = lift_to_graph(outputs, exec_graph, | |||
new List<Tensor>(), | |||
add_sources: true, | |||
handle_captures: true, | |||
base_graph: source_graph); | |||
} | |||
if (outputs[0].op.type == "Placeholder" | |||
@@ -253,7 +258,7 @@ namespace Tensorflow.Keras | |||
exec_graph.as_default(); | |||
exec_graph.Inputs = exec_graph.internal_captures; | |||
exec_graph.Outputs = outputs; | |||
var graph_fn = new ConcreteFunction(exec_graph); | |||
_CURRENT_SCRATCH_GRAPH = null; | |||
@@ -373,7 +378,7 @@ namespace Tensorflow.Keras | |||
/// <param name="data_format"></param> | |||
/// <param name="interpolation"></param> | |||
/// <returns></returns> | |||
public Tensor resize_images(Tensor x, int height_factor, int width_factor, | |||
public Tensor resize_images(Tensor x, int height_factor, int width_factor, | |||
string data_format, string interpolation = "nearest") | |||
{ | |||
var (rows, cols) = (0, 0); | |||
@@ -415,7 +420,7 @@ namespace Tensorflow.Keras | |||
/// <returns></returns> | |||
public Tensor concatenate(Tensors tensors, int axis = -1) | |||
{ | |||
if(axis < 0) | |||
if (axis < 0) | |||
{ | |||
var rank = tensors[0].ndim; | |||
if (rank > -1) | |||
@@ -454,6 +459,7 @@ namespace Tensorflow.Keras | |||
return x; | |||
} | |||
<<<<<<< HEAD | |||
public (Tensors, Tensors, Tensors) rnn( | |||
Func<Tensors, Tensors, (Tensors, Tensors)> step_function, // args:inputs, states, return:output, new_states | |||
Tensors inputs, // inputs is a tuple of tensors (one per input sequence) | |||
@@ -469,6 +475,29 @@ namespace Tensorflow.Keras | |||
{ | |||
Tensor swap_batch_timestep(Tensor input_t) | |||
======= | |||
public static (Tensors, Tensors) convert_inputs_if_ragged(OneOf<Tensor, RaggedTensor> inputs) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
// | |||
public static (Tensors, Tensors, Tensors) rnn( | |||
Func<Tensors, Tensors, (Tensors, Tensors)> step_function, // args:inputs, states, return:output, new_states | |||
Tensors inputs, // inputs is a tuple of tensors (one per input sequence) | |||
Tensors initial_states, | |||
bool go_backwards = false, | |||
Tensor? mask = null, | |||
Tensors? constants = null, | |||
bool unroll = false, | |||
Tensors? input_length = null, // An integer or a 1-D Tensor,depending on whether the time dimension is fixed-length or not | |||
bool time_major = false, | |||
bool zero_output_for_mask = false, | |||
bool return_all_outputs = true) | |||
{ | |||
Tensors swap_batch_timestep(Tensors input_t) | |||
>>>>>>> master | |||
{ | |||
var axes = Enumerable.Range(0, input_t.rank).ToArray(); | |||
axes[0] = 1; | |||
@@ -478,6 +507,7 @@ namespace Tensorflow.Keras | |||
if (!time_major) | |||
{ | |||
<<<<<<< HEAD | |||
inputs = Nest.MapStructure(swap_batch_timestep, inputs).ToTensors(); | |||
} | |||
@@ -486,6 +516,15 @@ namespace Tensorflow.Keras | |||
var time_steps = first_flatted_input.shape[0]; | |||
var batch = first_flatted_input.shape[1]; | |||
var time_steps_t = (int)first_flatted_input.shape[0]; | |||
======= | |||
inputs = nest.map_structure(swap_batch_timestep, inputs); | |||
} | |||
var flatted_inptus = nest.flatten(inputs); | |||
var time_steps = flatted_inptus[0].shape[0]; | |||
var batch = flatted_inptus[0].shape[1]; | |||
var time_step_t = tf.shape(flatted_inptus[0])[0]; | |||
>>>>>>> master | |||
foreach (var input_ in flatted_inptus) | |||
{ | |||
@@ -510,7 +549,16 @@ namespace Tensorflow.Keras | |||
} | |||
} | |||
<<<<<<< HEAD | |||
======= | |||
if (constants == null) | |||
{ | |||
constants = new List<Tensor>(); | |||
} | |||
>>>>>>> master | |||
// tf.where needs its condition tensor to be the same shape as its two | |||
// result tensors, but in our case the condition (mask) tensor is | |||
// (nsamples, 1), and inputs are (nsamples, ndimensions) or even more. | |||
@@ -520,12 +568,20 @@ namespace Tensorflow.Keras | |||
Tensors _expand_mask(Tensors mask_t, Tensors input_t, int fixed_dim = 1) | |||
{ | |||
<<<<<<< HEAD | |||
if (!mask_t.IsSingle()) | |||
======= | |||
if (nest.is_nested(mask_t)) | |||
>>>>>>> master | |||
{ | |||
throw new ValueError($"mask_t is expected to be tensor, but got {mask_t}"); | |||
} | |||
<<<<<<< HEAD | |||
if (!input_t.IsSingle()) | |||
======= | |||
if (nest.is_nested(input_t)) | |||
>>>>>>> master | |||
{ | |||
throw new ValueError($"input_t is expected to be tensor, but got {input_t}"); | |||
} | |||
@@ -535,7 +591,11 @@ namespace Tensorflow.Keras | |||
{ | |||
mask_t = tf.expand_dims(mask_t, -1); | |||
} | |||
<<<<<<< HEAD | |||
var multiples = Enumerable.Repeat(1, fixed_dim).ToArray().concat(input_t.shape.as_int_list().Skip(fixed_dim).ToArray()); | |||
======= | |||
var multiples = Enumerable.Repeat(1, fixed_dim).ToArray().concat(input_t.shape.as_int_list().ToList().GetRange(fixed_dim, input_t.rank)); | |||
>>>>>>> master | |||
return tf.tile(mask_t, multiples); | |||
} | |||
@@ -570,6 +630,7 @@ namespace Tensorflow.Keras | |||
// individually. The result of this will be a tuple of lists, each of | |||
// the item in tuple is list of the tensor with shape (batch, feature) | |||
<<<<<<< HEAD | |||
Tensors _process_single_input_t(Tensor input_t) | |||
{ | |||
var unstaked_input_t = array_ops.unstack(input_t); // unstack for time_step dim | |||
@@ -578,13 +639,32 @@ namespace Tensorflow.Keras | |||
unstaked_input_t = unstaked_input_t.Reverse().ToArray(); | |||
} | |||
return unstaked_input_t; | |||
======= | |||
Tensors _process_single_input_t(Tensors input_t) | |||
{ | |||
input_t = tf.unstack(input_t); // unstack for time_step dim | |||
if (go_backwards) | |||
{ | |||
input_t.Reverse(); | |||
} | |||
return input_t; | |||
>>>>>>> master | |||
} | |||
// TODO(Wanglongzhi2001) | |||
Tensors processed_input; | |||
<<<<<<< HEAD | |||
if (!inputs.IsSingle()) | |||
{ | |||
processed_input = inputs.MapStructure(_process_single_input_t).ReduceTo<Tensors, Tensor>().ToTensors(); | |||
======= | |||
if (nest.is_nested(inputs)) | |||
{ | |||
processed_input = nest.map_structure(_process_single_input_t, inputs); | |||
>>>>>>> master | |||
} | |||
else | |||
{ | |||
@@ -598,6 +678,7 @@ namespace Tensorflow.Keras | |||
{ | |||
inp.Add(t_[time]); | |||
} | |||
<<<<<<< HEAD | |||
return Nest.PackSequenceAs(inputs, inp); | |||
} | |||
@@ -925,6 +1006,336 @@ namespace Tensorflow.Keras | |||
last_output = Nest.PackSequenceAs(output_time_zero, last_output).ToTensors(); | |||
} | |||
======= | |||
return nest.pack_sequence_as(inputs, inp); | |||
} | |||
//if (mask != null) | |||
//{ | |||
// var mask_list = tf.unstack(mask); | |||
// if (go_backwards) | |||
// { | |||
// mask_list.Reverse(); | |||
// } | |||
// for (int i = 0; i < time_steps; i++) | |||
// { | |||
// // TODO(Wanglongzhi2001),deal with _get_input_tensor | |||
// var inp = _get_input_tensor(i); | |||
// var mask_t = mask_list[i]; | |||
// // TODO | |||
// var (output, newStates) = step_function((Tensors)inp, new Tensors { states, constants }); | |||
// var tiled_mask_t = _expand_mask(mask_t, output); | |||
// Tensors prev_output; | |||
// if (successive_outputs == null) | |||
// { | |||
// prev_output = tf.zeros_like(output); | |||
// } | |||
// else | |||
// { | |||
// prev_output = successive_outputs[successive_outputs.Length - 1]; | |||
// } | |||
// output = tf.where(tiled_mask_t, output, prev_output); | |||
// //var flat_states = nest.flatten(states); | |||
// //var flat_new_states = nest.flatten(newStates); | |||
// var flat_states = states.ToList(); | |||
// var flat_new_states = newStates.ToList(); | |||
// var tiledMaskT = flat_states | |||
// .Select(s => _expand_mask(mask_t, s)) | |||
// .ToArray(); | |||
// var tuple = Tuple.Create(tiledMaskT); | |||
// List<Tensor> flat_final_states = new List<Tensor>(); | |||
// foreach (var (m, s, ps) in Enumerable.Zip(tiled_mask_t, flat_new_states, flat_states)) | |||
// { | |||
// flat_final_states.Add(tf.where(m, s, ps)); | |||
// } | |||
// states = (Tensors)nest.pack_sequence_as(states, flat_final_states); | |||
// if (return_all_outputs) | |||
// { | |||
// successive_outputs.Add(output); | |||
// successive_states.Add(states); | |||
// } | |||
// else | |||
// { | |||
// successive_outputs = new Tensors { output }; | |||
// successive_states = new Tensors { states }; | |||
// } | |||
// } | |||
// last_output = successive_outputs[successive_outputs.Length - 1]; | |||
// new_states = successive_states[successive_states.Length - 1]; | |||
// outputs = tf.stack(successive_outputs); | |||
// if (zero_output_for_mask) | |||
// { | |||
// last_output = tf.where(_expand_mask(mask_list[mask_list.Length - 1], last_output), last_output, tf.zeros_like(last_output)); | |||
// outputs = tf.where(_expand_mask(mask, outputs, fixed_dim: 2), outputs, tf.zeros_like(outputs)); | |||
// } | |||
// else // mask is null | |||
// { | |||
// for (int i = 0; i < time_steps; i++) | |||
// { | |||
// var inp = _get_input_tensor(i); | |||
// var (output, newStates) = step_function((Tensors)inp, new Tensors { states, constants }); | |||
// states = newStates; | |||
// if (return_all_outputs) | |||
// { | |||
// successive_outputs.Add(output); | |||
// successive_states.Add(newStates); | |||
// } | |||
// else | |||
// { | |||
// successive_outputs = new Tensors { output }; | |||
// successive_states = new Tensors { newStates }; | |||
// } | |||
// } | |||
// last_output = successive_outputs[successive_outputs.Length - 1]; | |||
// new_states = successive_states[successive_states.Length - 1]; | |||
// outputs = tf.stack(successive_outputs); | |||
// } | |||
//} | |||
} | |||
//else // unroll == false | |||
//{ | |||
// var states = initial_states; | |||
// // Create input tensor array, if the inputs is nested tensors, then it | |||
// // will be flattened first, and tensor array will be created one per | |||
// // flattened tensor. | |||
// var input_ta = new List<TensorArray>(); | |||
// for (int i = 0; i < flatted_inptus.Count; i++) | |||
// { | |||
// input_ta.Add(tf.TensorArray(dtype: flatted_inptus[i].dtype, size: time_step_t)); | |||
// } | |||
// // Get the time(0) input and compute the output for that, the output will | |||
// // be used to determine the dtype of output tensor array. Don't read from | |||
// // input_ta due to TensorArray clear_after_read default to True. | |||
// var inps = new Tensors(); | |||
// foreach (var inp in flatted_inptus) | |||
// { | |||
// inps.Add(inp[0]); | |||
// } | |||
// var input_time_zero = nest.pack_sequence_as(inputs, inps); | |||
// // output_time_zero is used to determine the cell output shape and its | |||
// // dtype. the value is discarded. | |||
// (output_time_zero, _) = step_function((Tensor)input_time_zero, new Tensors { initial_states, constants }); | |||
// var output_ta_size = return_all_outputs ? time_step_t : tf.constant(1); | |||
// var output_ta = new List<TensorArray>(); | |||
// for (int i = 0; i < output_time_zero.ToList().Count; i++) | |||
// { | |||
// var Out = output_time_zero.ToList()[i]; | |||
// output_ta.Add(tf.TensorArray(dtype: Out.dtype, size: output_ta_size, element_shape: Out.shape)); | |||
// } | |||
// var time = tf.constant(0, dtype: TF_DataType.TF_INT32, name: "time"); | |||
// Func<Tensor, Tensor>? masking_fn; | |||
// Func<Tensors, Tensors, Tensors, Tensors>? compute_masked_output = null; | |||
// if (mask != null) | |||
// { | |||
// if (go_backwards) | |||
// { | |||
// mask = tf.reverse(mask, axis: new[] { 0 }); | |||
// } | |||
// var mask_ta = tf.TensorArray(dtype: TF_DataType.TF_BOOL, size: time_step_t); | |||
// mask_ta = mask_ta.unstack(mask); | |||
// masking_fn = (time) => | |||
// { | |||
// return mask_ta.read(time); | |||
// }; | |||
// compute_masked_output = (mask_t, flat_out, flat_mask) => | |||
// { | |||
// var tiled_mask_t = new Tensors(); | |||
// foreach (var o in flat_out) | |||
// { | |||
// tiled_mask_t.Add(_expand_mask(mask_t, o, fixed_dim: mask_t.rank)); | |||
// } | |||
// Tensors res = new Tensors(); | |||
// foreach (var (m, o, fm) in Enumerable.Zip(tiled_mask_t, flat_out, flat_mask)) | |||
// { | |||
// res.Add(tf.where(m, o, fm)); | |||
// } | |||
// return res; | |||
// }; | |||
// } | |||
// // TODO(Wanglongzhi2001), what the input_length's type should be(an integer or a single tensor)? | |||
// else if (input_length is Tensor) | |||
// { | |||
// if (go_backwards) | |||
// { | |||
// var max_len = tf.reduce_max(input_length, axis: 0); | |||
// var rev_input_length = tf.subtract(max_len - 1, input_length); | |||
// masking_fn = (time) => | |||
// { | |||
// return tf.less(rev_input_length, time); | |||
// }; | |||
// } | |||
// else | |||
// { | |||
// masking_fn = (time) => | |||
// { | |||
// return tf.greater(input_length, time); | |||
// }; | |||
// } | |||
// compute_masked_output = (mask_t, flat_out, flat_mask) => | |||
// { | |||
// var res = new List<Tensor>(); | |||
// foreach (var (o, zo) in zip(flat_out, flat_mask)) | |||
// { | |||
// res.Add(tf.where(mask_t, o, zo)); | |||
// } | |||
// return res; | |||
// }; | |||
// } | |||
// else | |||
// { | |||
// masking_fn = null; | |||
// } | |||
// if (masking_fn != null) | |||
// { | |||
// // Mask for the T output will be base on the output of T - 1. In the | |||
// // case T = 0, a zero filled tensor will be used. | |||
// var flat_zero_output = new Tensors(); | |||
// foreach (var o in nest.flatten(output_time_zero)) | |||
// { | |||
// flat_zero_output.Add(tf.zeros_like(o)); | |||
// } | |||
// (Tensor, List<TensorArray>, Tensors, Tensors) _step(Tensor time, List<TensorArray> output_ta_t, Tensors prev_output, Tensors states) | |||
// { | |||
// /* | |||
// RNN step function. | |||
// Args: | |||
// time: Current timestep value. | |||
// output_ta_t: TensorArray. | |||
// prev_output: tuple of outputs from time - 1. | |||
// *states: List of states. | |||
// Returns: | |||
// Tuple(todo): `(time + 1, output_ta_t, output) + tuple(new_states)` | |||
// */ | |||
// var current_input = input_ta.Select(x => x.read(time)).ToList(); | |||
// // maybe set shape | |||
// // TODO(Wanglongzhi2001),deal with nest.pack_sequence_as's return type | |||
// current_input = (List<Tensor>)nest.pack_sequence_as(inputs, current_input); | |||
// var mask_t = masking_fn(time); | |||
// var (output, new_states) = step_function(current_input, new Tensors { states, constants }); | |||
// // mask output | |||
// //var flat_output = nest.flatten(output); | |||
// var flat_output = output.ToList(); | |||
// var flat_mask_output = zero_output_for_mask ? flat_zero_output : prev_output.ToList(); | |||
// // TODO(Wanglongzhi2001),deal with compute_masked_output's third parameter's type | |||
// var flat_new_output = compute_masked_output(mask_t, flat_output, flat_mask_output); | |||
// // mask states | |||
// var flat_state = states.ToList(); | |||
// var flat_new_state = new_states.ToList(); | |||
// foreach (var (state, new_state) in zip(flat_state, flat_new_state)) | |||
// { | |||
// if (new_state is Tensor) | |||
// { | |||
// new_state.set_shape(state.shape); | |||
// } | |||
// } | |||
// var flat_final_state = compute_masked_output(mask_t, flat_new_state, flat_state); | |||
// new_states = (Tensors)nest.pack_sequence_as(new_states, flat_final_state); | |||
// var ta_index_to_write = return_all_outputs ? time : tf.constant(0); | |||
// var Output_ta_t = new List<TensorArray>(); | |||
// // TODO(Wanglongzhi2001),deal with zip output_ta_t | |||
// foreach (var (ta, Out) in zip(output_ta_t, flat_new_output)) | |||
// { | |||
// Output_ta_t.Add(ta.write(ta_index_to_write, Out)); | |||
// } | |||
// //new_states = (Tensors)nest.pack_sequence_as(initial_states, flat_new_state); | |||
// return (time + 1, Output_ta_t, flat_new_output, new_states); | |||
// } | |||
// Func<Tensor, Tensor> cond = (time) => (time < time_step_t); | |||
// var final_outputs = tf.while_loop(cond: cond, body: _step, loop_vars: (time, output_ta, flat_zero_output, states)); | |||
// new_states = final_outputs.Item4; | |||
// output_ta = final_outputs.Item2; | |||
// } | |||
// else | |||
// { | |||
// (Tensor, List<TensorArray>, Tensors) _step(Tensor time, List<TensorArray> output_ta_t, Tensors states) | |||
// { | |||
// var current_input = input_ta.Select(x => x.read(time)).ToList(); | |||
// // maybe set shape | |||
// // TODO(Wanglongzhi2001),deal with nest.pack_sequence_as's return type | |||
// current_input = (List<Tensor>)nest.pack_sequence_as(inputs, current_input); | |||
// var (output, new_states) = step_function(current_input, new Tensors { states, constants }); | |||
// var flat_state = states.ToList(); | |||
// var flat_new_state = new_states.ToList(); | |||
// foreach (var (state, new_state) in zip(flat_state, flat_new_state)) | |||
// { | |||
// if (new_state is Tensor) | |||
// { | |||
// new_state.set_shape(state.shape); | |||
// } | |||
// } | |||
// var flat_output = output.ToList(); | |||
// var ta_index_to_write = return_all_outputs ? time : tf.constant(0); | |||
// var Output_ta_t = new List<TensorArray>(); | |||
// foreach (var (ta, out_) in zip(output_ta_t, flat_output)) | |||
// { | |||
// Output_ta_t.Add(ta.write(ta_index_to_write, out_)); | |||
// } | |||
// new_states = (Tensors)nest.pack_sequence_as(initial_states, flat_new_state); | |||
// return (time + 1, Output_ta_t, new_states); | |||
// } | |||
// Func<Tensor, Tensor> cond = (time) => (time < time_step_t); | |||
// var final_outputs = tf.while_loop(cond: cond, body: _step, loop_vars: (time, output_ta, states)); | |||
// new_states = final_outputs.Item3; | |||
// output_ta = final_outputs.Item2; | |||
// } | |||
// //Tensors outputs = new Tensors(); | |||
// foreach (var o in output_ta) | |||
// { | |||
// outputs.Add(o.stack()); | |||
// } | |||
// foreach (var o in outputs) | |||
// { | |||
// last_output.Add(o[-1]); | |||
// } | |||
// outputs = (Tensors)nest.pack_sequence_as(output_time_zero, outputs); | |||
// last_output = (Tensors)nest.pack_sequence_as(output_time_zero, last_output); | |||
//} | |||
>>>>>>> master | |||
Func<Tensor, Tensor> set_shape; | |||
set_shape = (output_) => | |||
@@ -941,11 +1352,16 @@ namespace Tensorflow.Keras | |||
shape[0] = 1; | |||
} | |||
shape[1] = (int)batch; | |||
<<<<<<< HEAD | |||
output_.shape = shape; | |||
======= | |||
output_.set_shape(new Tensor(shape)); | |||
>>>>>>> master | |||
} | |||
return output_; | |||
}; | |||
<<<<<<< HEAD | |||
outputs = Nest.MapStructure(set_shape, outputs).ToTensors(); | |||
if (!time_major) | |||
{ | |||
@@ -973,6 +1389,37 @@ namespace Tensorflow.Keras | |||
} | |||
throw new NotImplementedException("Not implemented currently, please submit an issue to https://github.com/SciSharp/TensorFlow.NET/issues"); | |||
======= | |||
var Outputs = (Tensors)nest.map_structure(set_shape, outputs); | |||
if (!time_major) | |||
{ | |||
Outputs = nest.map_structure(swap_batch_timestep, outputs); | |||
} | |||
return (last_output, Outputs, new_states); | |||
} | |||
// Multiplies 2 tensors (and/or variables) and returns a tensor. | |||
// This operation corresponds to `numpy.dot(a, b, out=None)`. | |||
public Tensor Dot(Tensor x, Tensor y) | |||
{ | |||
//if (x.ndim != 1 && (x.ndim > 2 || y.ndim > 2)) | |||
//{ | |||
// var x_shape = new List<int>(); | |||
// foreach (var (i,s) in zip(x.shape.as_int_list(), tf.unstack(tf.shape(x)))) | |||
// { | |||
// if (i != 0) | |||
// { | |||
// x_shape.append(i); | |||
// } | |||
// else | |||
// { | |||
// x_shape.append(s); | |||
// } | |||
// } | |||
//} | |||
throw new NotImplementedException(); | |||
>>>>>>> master | |||
} | |||
} | |||
} |
@@ -326,7 +326,11 @@ namespace Tensorflow.Keras.Engine | |||
nodes_in_decreasing_depth.append(node); | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
var tensor_dict = new Dictionary<long, Queue<Tensor>>(); | |||
// map input values | |||
@@ -31,7 +31,11 @@ namespace Tensorflow.Keras.Engine | |||
if (!built) | |||
MaybeBuild(inputs); | |||
<<<<<<< HEAD | |||
var outputs = Call(inputs, state: states, training: training); | |||
======= | |||
var outputs = Call(inputs, initial_state: state, training: training); | |||
>>>>>>> master | |||
// memory leak | |||
// _set_connectivity_metadata_(inputs, outputs); | |||
@@ -254,6 +254,10 @@ namespace Tensorflow.Keras.Engine | |||
/// </summary> | |||
public Func<Tensors, Tensors>? ReplacedCall { get; set; } = null; | |||
public StateSizeWrapper state_size => throw new NotImplementedException(); | |||
public int output_size => throw new NotImplementedException(); | |||
public Layer(LayerArgs args) | |||
{ | |||
Initialize(args); | |||
@@ -332,9 +336,13 @@ namespace Tensorflow.Keras.Engine | |||
/// <param name="state"></param> | |||
/// <param name="training"></param> | |||
/// <returns></returns> | |||
<<<<<<< HEAD | |||
protected virtual Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected virtual Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
if(ReplacedCall is not null) | |||
if (ReplacedCall is not null) | |||
{ | |||
return ReplacedCall(inputs); | |||
} | |||
@@ -434,56 +442,61 @@ namespace Tensorflow.Keras.Engine | |||
public override void SetAttr(string name, object value) | |||
{ | |||
// TODO(Rinne): deal with "_self_setattr_tracking". | |||
//// TODO(Rinne): deal with "_self_setattr_tracking". | |||
value = TrackableDataStructure.sticky_attribute_assignment(this, name, value); | |||
//value = TrackableDataStructure.sticky_attribute_assignment(this, name, value); | |||
foreach(var val in nest.flatten(value)) | |||
{ | |||
if(val is Metric) | |||
{ | |||
// TODO(Rinne): deal with metrics. | |||
} | |||
} | |||
// TODO(Rinne): deal with "_auto_track_sub_layers". | |||
foreach(var val in nest.flatten(value)) | |||
{ | |||
if(val is not IVariableV1 variable) | |||
{ | |||
continue; | |||
} | |||
if (variable.Trainable) | |||
{ | |||
if (_trainable_weights.Contains(variable)) | |||
{ | |||
continue; | |||
} | |||
_trainable_weights.Add(variable); | |||
} | |||
else | |||
{ | |||
if (_non_trainable_weights.Contains(variable)) | |||
{ | |||
continue; | |||
} | |||
_non_trainable_weights.Add(variable); | |||
} | |||
keras.backend.track_variable(variable); | |||
} | |||
//foreach(var val in nest.flatten(value)) | |||
//{ | |||
// if(val is Metric) | |||
// { | |||
// // TODO(Rinne): deal with metrics. | |||
// } | |||
//} | |||
//// TODO(Rinne): deal with "_auto_track_sub_layers". | |||
//foreach(var val in nest.flatten(value)) | |||
//{ | |||
// if(val is not IVariableV1 variable) | |||
// { | |||
// continue; | |||
// } | |||
// if (variable.Trainable) | |||
// { | |||
// if (_trainable_weights.Contains(variable)) | |||
// { | |||
// continue; | |||
// } | |||
// _trainable_weights.Add(variable); | |||
// } | |||
// else | |||
// { | |||
// if (_non_trainable_weights.Contains(variable)) | |||
// { | |||
// continue; | |||
// } | |||
// _non_trainable_weights.Add(variable); | |||
// } | |||
// keras.backend.track_variable(variable); | |||
//} | |||
//// Directly use the implementation of `Trackable`. | |||
//var t = this.GetType(); | |||
//var field_info = t.GetField(name); | |||
//if (field_info is not null) | |||
//{ | |||
// field_info.SetValue(this, value); | |||
//} | |||
//else | |||
//{ | |||
// CustomizedFields[name] = value; | |||
//} | |||
} | |||
// Directly use the implementation of `Trackable`. | |||
var t = this.GetType(); | |||
var field_info = t.GetField(name); | |||
if (field_info is not null) | |||
{ | |||
field_info.SetValue(this, value); | |||
} | |||
else | |||
{ | |||
CustomizedFields[name] = value; | |||
} | |||
Tensors ILayer.Call(Tensors inputs, Tensor mask, bool? training, Tensors initial_state, Tensors constants) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -144,7 +144,11 @@ namespace Tensorflow.Keras.Engine | |||
} | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
if (!_has_explicit_input_shape) | |||
{ | |||
@@ -155,10 +159,10 @@ namespace Tensorflow.Keras.Engine | |||
{ | |||
if (!built) | |||
_init_graph_network(this.inputs, outputs); | |||
return base.Call(inputs, state, training); | |||
return base.Call(inputs, initial_state, training); | |||
} | |||
return base.Call(inputs, state, training); | |||
return base.Call(inputs, initial_state, training); | |||
} | |||
void _build_graph_network_for_inferred_shape(Shape input_shape, TF_DataType input_dtype) | |||
@@ -30,7 +30,11 @@ namespace Tensorflow.Keras.Layers { | |||
base.build(input_shape); | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
Tensor output = inputs; | |||
output = tf.where(output > 0f, output, | |||
@@ -17,7 +17,11 @@ namespace Tensorflow.Keras.Layers { | |||
{ | |||
base.build(input_shape); | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
Tensor output = inputs; | |||
return tf.exp(output); | |||
@@ -11,7 +11,12 @@ namespace Tensorflow.Keras.Layers { | |||
public HardSigmoid ( LayerArgs args ) : base(args) { | |||
// hard sigmoid has no arguments | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call ( Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null ) { | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
{ | |||
>>>>>>> master | |||
Tensor x = inputs; | |||
return tf.clip_by_value( | |||
tf.add(tf.multiply(x, 0.2f), 0.5f), 0f, 1f); | |||
@@ -20,7 +20,11 @@ namespace Tensorflow.Keras.Layers | |||
this.args = args; | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
return tf.nn.leaky_relu(inputs, alpha: alpha); | |||
} | |||
@@ -23,7 +23,12 @@ namespace Tensorflow.Keras.Layers { | |||
} | |||
base.build(input_shape); | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call ( Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
{ | |||
>>>>>>> master | |||
Tensor output = inputs; | |||
return tf.where(output > 0f, | |||
tf.multiply(scale, output), | |||
@@ -12,8 +12,14 @@ namespace Tensorflow.Keras.Layers { | |||
public Softmax ( SoftmaxArgs args ) : base(args) { | |||
axis = args.axis; | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call ( Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { | |||
Tensor x = inputs.Length == 2 ? inputs[0] + ((1.0 - tf.cast(inputs[1], inputs.dtype)) * 1e-9) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
{ | |||
Tensor x = inputs.Length == 2 ? inputs + ((1.0 - tf.cast(inputs[1], inputs.dtype)) * 1e-9) | |||
>>>>>>> master | |||
: inputs; | |||
Tensor e = tf.exp(tf.sub(x, tf.reduce_max(x, axis: this.axis, keepdims: true))); | |||
Tensor s = tf.reduce_sum(e, axis: this.axis, keepdims: true); | |||
@@ -11,7 +11,12 @@ namespace Tensorflow.Keras.Layers { | |||
public Softplus ( LayerArgs args ) : base(args) { | |||
// Softplus has no arguments | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call ( Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
{ | |||
>>>>>>> master | |||
Tensor x = inputs; | |||
return tf.log( | |||
tf.add(tf.exp(x), 1f)); | |||
@@ -11,7 +11,12 @@ namespace Tensorflow.Keras.Layers { | |||
public Softsign ( LayerArgs args ) : base(args) { | |||
// Softsign has no arguments | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call ( Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
{ | |||
>>>>>>> master | |||
Tensor x = inputs; | |||
// x / (abs(x) + 1) | |||
return tf.div(x, tf.add(1f, tf.abs(x))); | |||
@@ -11,7 +11,12 @@ namespace Tensorflow.Keras.Layers { | |||
public Swish ( LayerArgs args ) : base(args) { | |||
// Swish has no arguments | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call ( Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
{ | |||
>>>>>>> master | |||
Tensor x = inputs; | |||
// x / (1 + exp(-x)) | |||
@@ -14,7 +14,11 @@ namespace Tensorflow.Keras.Layers | |||
{ | |||
// Tanh has no arguments | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
Tensor x = inputs; | |||
@@ -115,7 +115,11 @@ namespace Tensorflow.Keras.Layers | |||
return (tf.linalg.einsum("bij,bjk->bik", (weights, value)), weights); | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
Tensors _inp; | |||
Tensors _mask = null; | |||
@@ -253,7 +253,11 @@ namespace Tensorflow.Keras.Layers | |||
return (attention_output, attention_scores); | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
Tensors _inp; | |||
Tensor _mask = null; | |||
@@ -84,7 +84,11 @@ namespace Tensorflow.Keras.Layers | |||
_buildInputShape = input_shape; | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
var inputs_shape = array_ops.shape(inputs); | |||
var batch_size = inputs_shape[0]; | |||
@@ -104,7 +104,11 @@ namespace Tensorflow.Keras.Layers | |||
_buildInputShape = input_shape; | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = false, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
var outputs = _convolution_op.Apply(inputs, kernel.AsTensor()); | |||
if (use_bias) | |||
@@ -70,7 +70,11 @@ namespace Tensorflow.Keras.Layers | |||
built = true; | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
Tensor outputs = null; | |||
var rank = inputs.rank; | |||
@@ -190,7 +190,11 @@ namespace Tensorflow.Keras.Layers | |||
// return new dict(base_config.items().ToList() + config.items().ToList()); | |||
//} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
var ret = tf.linalg.einsum(this.equation, (inputs, this.kernel.AsTensor())); | |||
if (this.bias != null) | |||
@@ -67,7 +67,11 @@ namespace Tensorflow.Keras.Layers | |||
_buildInputShape = input_shape; | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
var dtype = inputs.dtype; | |||
if (dtype != tf.int32 && dtype != tf.int64) | |||
@@ -738,6 +738,27 @@ namespace Tensorflow.Keras.Layers | |||
ReturnState = return_state | |||
}); | |||
public ILayer SimpleRNNCell( | |||
int units, | |||
string activation = "tanh", | |||
bool use_bias = true, | |||
string kernel_initializer = "glorot_uniform", | |||
string recurrent_initializer = "orthogonal", | |||
string bias_initializer = "zeros", | |||
float dropout = 0f, | |||
float recurrent_dropout = 0f) | |||
=> new SimpleRNNCell(new SimpleRNNArgs | |||
{ | |||
Units = units, | |||
Activation = keras.activations.GetActivationFromName(activation), | |||
UseBias = use_bias, | |||
KernelInitializer = GetInitializerByName(kernel_initializer), | |||
RecurrentInitializer = GetInitializerByName(recurrent_initializer), | |||
Dropout = dropout, | |||
RecurrentDropout = recurrent_dropout | |||
} | |||
); | |||
/// <summary> | |||
/// | |||
/// </summary> | |||
@@ -22,7 +22,11 @@ namespace Tensorflow.Keras.Layers | |||
_buildInputShape = input_shape; | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
return _merge_function(inputs); | |||
} | |||
@@ -147,7 +147,11 @@ namespace Tensorflow.Keras.Layers | |||
return false; | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
Tensor outputs = null; | |||
var training_tensor = training == null | |||
@@ -102,7 +102,11 @@ namespace Tensorflow.Keras.Layers | |||
return input_shape; | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
Tensor outputs = null; | |||
var inputs_dtype = inputs.dtype.as_base_dtype(); | |||
@@ -158,7 +158,11 @@ namespace Tensorflow.Keras.Layers | |||
base.adapt(data, batch_size: batch_size, steps: steps); | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
if (_args.Invert) | |||
{ | |||
@@ -13,7 +13,11 @@ namespace Tensorflow.Keras.Layers | |||
{ | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
if (data_format == "channels_last") | |||
return math_ops.reduce_mean(inputs, 1, false); | |||
@@ -13,7 +13,11 @@ namespace Tensorflow.Keras.Layers | |||
{ | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
if (data_format == "channels_last") | |||
return math_ops.reduce_mean(inputs, (1, 2), false); | |||
@@ -13,7 +13,11 @@ namespace Tensorflow.Keras.Layers | |||
{ | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
if (data_format == "channels_last") | |||
return math_ops.reduce_max(inputs, 1, false); | |||
@@ -13,7 +13,11 @@ namespace Tensorflow.Keras.Layers | |||
{ | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
if (data_format == "channels_last") | |||
return math_ops.reduce_max(inputs, (1, 2), false); | |||
@@ -37,7 +37,11 @@ namespace Tensorflow.Keras.Layers | |||
input_spec = new InputSpec(ndim: 3); | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
int pad_axis = args.DataFormat == "channels_first" ? 2 : 3; | |||
inputs = tf.expand_dims(inputs, pad_axis); | |||
@@ -37,7 +37,11 @@ namespace Tensorflow.Keras.Layers | |||
input_spec = new InputSpec(ndim: 4); | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
int[] pool_shape; | |||
int[] strides; | |||
@@ -15,7 +15,11 @@ namespace Tensorflow.Keras.Layers | |||
this.args = args; | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
var depth = args.NumTokens; | |||
var max_value = tf.reduce_max(inputs); | |||
@@ -18,7 +18,11 @@ namespace Tensorflow.Keras.Layers | |||
this.args = args; | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
scale = constant_op.constant(args.Scale, args.DType); | |||
offset = constant_op.constant(args.Offset, args.DType); | |||
@@ -20,7 +20,11 @@ namespace Tensorflow.Keras.Layers | |||
this.args = args; | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
return image_ops_impl.resize_images_v2(inputs, new[] { args.Height, args.Width }, method: args.Interpolation); | |||
} | |||
@@ -16,7 +16,11 @@ namespace Tensorflow.Keras.Layers | |||
this.args = args; | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
if (training == null) | |||
training = false; | |||
@@ -29,7 +29,11 @@ namespace Tensorflow.Keras.Layers.Reshaping | |||
_buildInputShape = input_shape; | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
Tensor output = inputs; | |||
if (output.rank != 3) | |||
@@ -22,7 +22,11 @@ namespace Tensorflow.Keras.Layers.Reshaping | |||
built = true; | |||
_buildInputShape = input_shape; | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
Tensor output = inputs; | |||
if (output.rank != 4) | |||
@@ -22,7 +22,11 @@ namespace Tensorflow.Keras.Layers.Reshaping | |||
_buildInputShape = input_shape; | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
Tensor output = inputs; | |||
if (output.rank != 5) | |||
@@ -24,7 +24,11 @@ namespace Tensorflow.Keras.Layers | |||
_channels_first = args.DataFormat == "channels_first"; | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
if (_channels_first) | |||
{ | |||
@@ -29,7 +29,11 @@ namespace Tensorflow.Keras.Layers { | |||
built = true; | |||
_buildInputShape = input_shape; | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
Tensor outputs = inputs; | |||
return tf.transpose(outputs, new Axis(permute)); | |||
@@ -20,7 +20,11 @@ namespace Tensorflow.Keras.Layers | |||
this.args = args; | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
var shapes = new List<Tensor>(); | |||
shapes.Add(array_ops.shape(inputs)[0]); | |||
@@ -25,7 +25,11 @@ namespace Tensorflow.Keras.Layers | |||
inputSpec = new InputSpec(ndim: 4); | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
return keras.backend.resize_images(inputs, | |||
size[0], size[1], | |||
@@ -27,7 +27,11 @@ namespace Tensorflow.Keras.Layers | |||
this.input_spec = new InputSpec(ndim: 4); | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
return keras.backend.spatial_2d_padding(inputs, | |||
padding: padding, | |||
@@ -0,0 +1,83 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.ArgsDefinition.Rnn; | |||
using Tensorflow.Keras.Engine; | |||
namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
public class DropoutRNNCellMixin | |||
{ | |||
public float dropout; | |||
public float recurrent_dropout; | |||
// Get the dropout mask for RNN cell's input. | |||
public Tensors? get_dropout_maskcell_for_cell(Tensors input, bool training, int count = 1) | |||
{ | |||
if (dropout == 0f) | |||
return null; | |||
return _generate_dropout_mask( | |||
tf.ones_like(input), | |||
dropout, | |||
training, | |||
count); | |||
} | |||
// Get the recurrent dropout mask for RNN cell. | |||
public Tensors? get_recurrent_dropout_maskcell_for_cell(Tensors input, bool training, int count = 1) | |||
{ | |||
if (dropout == 0f) | |||
return null; | |||
return _generate_dropout_mask( | |||
tf.ones_like(input), | |||
recurrent_dropout, | |||
training, | |||
count); | |||
} | |||
public Tensors _create_dropout_mask(Tensors input, bool training, int count = 1) | |||
{ | |||
return _generate_dropout_mask( | |||
tf.ones_like(input), | |||
dropout, | |||
training, | |||
count); | |||
} | |||
public Tensors _create_recurrent_dropout_mask(Tensors input, bool training, int count = 1) | |||
{ | |||
return _generate_dropout_mask( | |||
tf.ones_like(input), | |||
recurrent_dropout, | |||
training, | |||
count); | |||
} | |||
public Tensors _generate_dropout_mask(Tensor ones, float rate, bool training, int count = 1) | |||
{ | |||
Tensors dropped_inputs() | |||
{ | |||
DropoutArgs args = new DropoutArgs(); | |||
args.Rate = rate; | |||
var DropoutLayer = new Dropout(args); | |||
var mask = DropoutLayer.Apply(ones, training: training); | |||
return mask; | |||
} | |||
if (count > 1) | |||
{ | |||
Tensors results = new Tensors(); | |||
for (int i = 0; i < count; i++) | |||
{ | |||
results.Add(dropped_inputs()); | |||
} | |||
return results; | |||
} | |||
return dropped_inputs(); | |||
} | |||
} | |||
} |
@@ -1,38 +1,19 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.ArgsDefinition.Rnn; | |||
using Tensorflow.Keras.Engine; | |||
namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
public abstract class DropoutRNNCellMixin: RnnCellBase | |||
public class DropoutRNNCellMixin | |||
{ | |||
public float dropout; | |||
public float recurrent_dropout; | |||
// TODO(Rinne): deal with cache. | |||
public DropoutRNNCellMixin(LayerArgs args): base(args) | |||
{ | |||
} | |||
protected void _create_non_trackable_mask_cache() | |||
{ | |||
} | |||
public void reset_dropout_mask() | |||
{ | |||
} | |||
public void reset_recurrent_dropout_mask() | |||
{ | |||
} | |||
public Tensors? get_dropout_mask_for_cell(Tensors input, bool training, int count = 1) | |||
// Get the dropout mask for RNN cell's input. | |||
public Tensors? get_dropout_maskcell_for_cell(Tensors input, bool training, int count = 1) | |||
{ | |||
if (dropout == 0f) | |||
return null; | |||
@@ -44,7 +25,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
} | |||
// Get the recurrent dropout mask for RNN cell. | |||
public Tensors? get_recurrent_dropout_mask_for_cell(Tensors input, bool training, int count = 1) | |||
public Tensors? get_recurrent_dropout_maskcell_for_cell(Tensors input, bool training, int count = 1) | |||
{ | |||
if (dropout == 0f) | |||
return null; | |||
@@ -97,4 +78,6 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
return dropped_inputs(); | |||
} | |||
} | |||
} |
@@ -27,9 +27,15 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
.ToArray(); | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
return base.Call(inputs, initial_state: state, training: training); | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
{ | |||
return base.Call(inputs, initial_state: initial_state, training: training); | |||
>>>>>>> master | |||
} | |||
} | |||
} |
@@ -1,16 +1,30 @@ | |||
<<<<<<< HEAD | |||
using OneOf; | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Reflection; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
======= | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Reflection; | |||
using static Tensorflow.Keras.ArgsDefinition.Rnn.RNNArgs; | |||
>>>>>>> master | |||
using Tensorflow.Keras.ArgsDefinition.Rnn; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Saving; | |||
using Tensorflow.Util; | |||
<<<<<<< HEAD | |||
using Tensorflow.Common.Extensions; | |||
using System.Linq.Expressions; | |||
using Tensorflow.Keras.Utils; | |||
using Tensorflow.Common.Types; | |||
======= | |||
using OneOf; | |||
using OneOf.Types; | |||
using Tensorflow.Common.Extensions; | |||
>>>>>>> master | |||
// from tensorflow.python.distribute import distribution_strategy_context as ds_context; | |||
namespace Tensorflow.Keras.Layers.Rnn | |||
@@ -22,6 +36,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
/// </summary> | |||
public class RNN : RnnBase | |||
{ | |||
<<<<<<< HEAD | |||
private RNNArgs _args; | |||
private object _input_spec = null; // or NoneValue?? | |||
private object _state_spec = null; | |||
@@ -31,6 +46,17 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
protected IVariableV1 _kernel; | |||
protected IVariableV1 _bias; | |||
protected IRnnCell _cell; | |||
======= | |||
private RNNArgs args; | |||
private object input_spec = null; // or NoneValue?? | |||
private object state_spec = null; | |||
private Tensors _states = null; | |||
private object constants_spec = null; | |||
private int _num_constants = 0; | |||
protected IVariableV1 kernel; | |||
protected IVariableV1 bias; | |||
protected ILayer cell; | |||
>>>>>>> master | |||
public RNN(RNNArgs args) : base(PreConstruct(args)) | |||
{ | |||
@@ -38,17 +64,51 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
SupportsMasking = true; | |||
// if is StackedRnncell | |||
<<<<<<< HEAD | |||
if (args.Cells != null) | |||
{ | |||
_cell = new StackedRNNCells(new StackedRNNCellsArgs | |||
{ | |||
Cells = args.Cells | |||
======= | |||
if (args.Cell.IsT0) | |||
{ | |||
cell = new StackedRNNCells(new StackedRNNCellsArgs | |||
{ | |||
Cells = args.Cell.AsT0, | |||
>>>>>>> master | |||
}); | |||
} | |||
else | |||
{ | |||
<<<<<<< HEAD | |||
_cell = args.Cell; | |||
} | |||
======= | |||
cell = args.Cell.AsT1; | |||
} | |||
Type type = cell.GetType(); | |||
MethodInfo callMethodInfo = type.GetMethod("Call"); | |||
if (callMethodInfo == null) | |||
{ | |||
throw new ValueError(@"Argument `cell` or `cells`should have a `call` method. "); | |||
} | |||
PropertyInfo state_size_info = type.GetProperty("state_size"); | |||
if (state_size_info == null) | |||
{ | |||
throw new ValueError(@"The RNN cell should have a `state_size` attribute"); | |||
} | |||
// get input_shape | |||
this.args = PreConstruct(args); | |||
// The input shape is unknown yet, it could have nested tensor inputs, and | |||
// the input spec will be the list of specs for nested inputs, the structure | |||
// of the input_spec will be the same as the input. | |||
>>>>>>> master | |||
// get input_shape | |||
_args = PreConstruct(args); | |||
@@ -169,9 +229,165 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
} | |||
} | |||
// States is a tuple consist of cell states_size, like (cell1.state_size, cell2.state_size,...) | |||
// state_size can be a single integer, can also be a list/tuple of integers, can also be TensorShape or a list/tuple of TensorShape | |||
public Tensors States | |||
{ | |||
get | |||
{ | |||
if (_states == null) | |||
{ | |||
var state = nest.map_structure(x => null, cell.state_size); | |||
return nest.is_nested(state) ? state : new Tensors { state }; | |||
} | |||
return _states; | |||
} | |||
set { _states = value; } | |||
} | |||
private OneOf<Shape, List<Shape>> compute_output_shape(Shape input_shape) | |||
{ | |||
var batch = input_shape[0]; | |||
var time_step = input_shape[1]; | |||
if (args.TimeMajor) | |||
{ | |||
(batch, time_step) = (time_step, batch); | |||
} | |||
// state_size is a array of ints or a positive integer | |||
var state_size = cell.state_size; | |||
// TODO(wanglongzhi2001),flat_output_size应该是什么类型的,Shape还是Tensor | |||
Func<Shape, Shape> _get_output_shape; | |||
_get_output_shape = (flat_output_size) => | |||
{ | |||
var output_dim = flat_output_size.as_int_list(); | |||
Shape output_shape; | |||
if (args.ReturnSequences) | |||
{ | |||
if (args.TimeMajor) | |||
{ | |||
output_shape = new Shape(new int[] { (int)time_step, (int)batch }.concat(output_dim)); | |||
} | |||
else | |||
{ | |||
output_shape = new Shape(new int[] { (int)batch, (int)time_step }.concat(output_dim)); | |||
} | |||
} | |||
else | |||
{ | |||
output_shape = new Shape(new int[] { (int)batch }.concat(output_dim)); | |||
} | |||
return output_shape; | |||
}; | |||
Type type = cell.GetType(); | |||
PropertyInfo output_size_info = type.GetProperty("output_size"); | |||
Shape output_shape; | |||
if (output_size_info != null) | |||
{ | |||
output_shape = nest.map_structure(_get_output_shape, cell.output_size); | |||
// TODO(wanglongzhi2001),output_shape应该简单的就是一个元组还是一个Shape类型 | |||
output_shape = (output_shape.Length == 1 ? (int)output_shape[0] : output_shape); | |||
} | |||
else | |||
{ | |||
output_shape = _get_output_shape(state_size[0]); | |||
} | |||
if (args.ReturnState) | |||
{ | |||
Func<Shape, Shape> _get_state_shape; | |||
_get_state_shape = (flat_state) => | |||
{ | |||
var state_shape = new int[] { (int)batch }.concat(flat_state.as_int_list()); | |||
return new Shape(state_shape); | |||
}; | |||
var state_shape = _get_state_shape(new Shape(state_size.ToArray())); | |||
return new List<Shape> { output_shape, state_shape }; | |||
} | |||
else | |||
{ | |||
return output_shape; | |||
} | |||
} | |||
private Tensors compute_mask(Tensors inputs, Tensors mask) | |||
{ | |||
// Time step masks must be the same for each input. | |||
// This is because the mask for an RNN is of size [batch, time_steps, 1], | |||
// and specifies which time steps should be skipped, and a time step | |||
// must be skipped for all inputs. | |||
mask = nest.flatten(mask)[0]; | |||
var output_mask = args.ReturnSequences ? mask : null; | |||
if (args.ReturnState) | |||
{ | |||
var state_mask = new List<Tensor>(); | |||
for (int i = 0; i < len(States); i++) | |||
{ | |||
state_mask.Add(null); | |||
} | |||
return new List<Tensor> { output_mask }.concat(state_mask); | |||
} | |||
else | |||
{ | |||
return output_mask; | |||
} | |||
} | |||
public override void build(KerasShapesWrapper input_shape) | |||
{ | |||
object get_input_spec(Shape shape) | |||
<<<<<<< HEAD | |||
======= | |||
{ | |||
var input_spec_shape = shape.as_int_list(); | |||
var (batch_index, time_step_index) = args.TimeMajor ? (1, 0) : (0, 1); | |||
if (!args.Stateful) | |||
{ | |||
input_spec_shape[batch_index] = -1; | |||
} | |||
input_spec_shape[time_step_index] = -1; | |||
return new InputSpec(shape: input_spec_shape); | |||
} | |||
Shape get_step_input_shape(Shape shape) | |||
{ | |||
// return shape[1:] if self.time_major else (shape[0],) + shape[2:] | |||
if (args.TimeMajor) | |||
{ | |||
return shape.as_int_list().ToList().GetRange(1, shape.Length - 1).ToArray(); | |||
} | |||
else | |||
{ | |||
return new int[] { shape.as_int_list()[0] }.concat(shape.as_int_list().ToList().GetRange(2, shape.Length - 2).ToArray()); | |||
} | |||
} | |||
object get_state_spec(Shape shape) | |||
{ | |||
var state_spec_shape = shape.as_int_list(); | |||
// append bacth dim | |||
state_spec_shape = new int[] { -1 }.concat(state_spec_shape); | |||
return new InputSpec(shape: state_spec_shape); | |||
} | |||
// Check whether the input shape contains any nested shapes. It could be | |||
// (tensor_shape(1, 2), tensor_shape(3, 4)) or (1, 2, 3) which is from | |||
// numpy inputs. | |||
if (!cell.Built) | |||
>>>>>>> master | |||
{ | |||
var input_spec_shape = shape.as_int_list(); | |||
@@ -220,6 +436,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
} | |||
} | |||
<<<<<<< HEAD | |||
/// <summary> | |||
/// | |||
/// </summary> | |||
@@ -243,16 +460,36 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
//var (inputs_padded, row_length) = BackendImpl.convert_inputs_if_ragged(inputs); | |||
// 暂时先不接受ragged tensor | |||
int row_length = 0; // TODO(Rinne): support this param. | |||
======= | |||
// inputs: Tensors | |||
// mask: Binary tensor of shape [batch_size, timesteps] indicating whether a given timestep should be masked | |||
// training: bool | |||
// initial_state: List of initial state tensors to be passed to the first call of the cell | |||
// constants: List of constant tensors to be passed to the cell at each timestep | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
{ | |||
//var (inputs_padded, row_length) = BackendImpl.convert_inputs_if_ragged(inputs); | |||
// 暂时先不接受ragged tensor | |||
int? row_length = null; | |||
>>>>>>> master | |||
bool is_ragged_input = false; | |||
_validate_args_if_ragged(is_ragged_input, mask); | |||
(inputs, initial_state, constants) = _process_inputs(inputs, initial_state, constants); | |||
<<<<<<< HEAD | |||
_maybe_reset_cell_dropout_mask(_cell); | |||
if (_cell is StackedRNNCells) | |||
{ | |||
var stack_cell = _cell as StackedRNNCells; | |||
foreach (IRnnCell cell in stack_cell.Cells) | |||
======= | |||
_maybe_reset_cell_dropout_mask(cell); | |||
if (cell is StackedRNNCells) | |||
{ | |||
var stack_cell = cell as StackedRNNCells; | |||
foreach (var cell in stack_cell.Cells) | |||
>>>>>>> master | |||
{ | |||
_maybe_reset_cell_dropout_mask(cell); | |||
} | |||
@@ -261,25 +498,43 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
if (mask != null) | |||
{ | |||
// Time step masks must be the same for each input. | |||
<<<<<<< HEAD | |||
mask = mask.Flatten().First(); | |||
} | |||
Shape input_shape; | |||
if (!inputs.IsNested()) | |||
======= | |||
mask = nest.flatten(mask)[0]; | |||
} | |||
Shape input_shape; | |||
if (nest.is_nested(inputs)) | |||
>>>>>>> master | |||
{ | |||
// In the case of nested input, use the first element for shape check | |||
// input_shape = nest.flatten(inputs)[0].shape; | |||
// TODO(Wanglongzhi2001) | |||
<<<<<<< HEAD | |||
input_shape = inputs.Flatten().First().shape; | |||
======= | |||
input_shape = nest.flatten(inputs)[0].shape; | |||
>>>>>>> master | |||
} | |||
else | |||
{ | |||
input_shape = inputs.shape; | |||
} | |||
<<<<<<< HEAD | |||
var timesteps = _args.TimeMajor ? input_shape[0] : input_shape[1]; | |||
if (_args.Unroll && timesteps == null) | |||
======= | |||
var timesteps = args.TimeMajor ? input_shape[0] : input_shape[1]; | |||
if (args.Unroll && timesteps != null) | |||
>>>>>>> master | |||
{ | |||
throw new ValueError( | |||
"Cannot unroll a RNN if the " + | |||
@@ -297,6 +552,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
} | |||
// cell_call_fn = (self.cell.__call__ if callable(self.cell) else self.cell.call) | |||
<<<<<<< HEAD | |||
Func<Tensors, Tensors, (Tensors, Tensors)> step; | |||
bool is_tf_rnn_cell = _cell.IsTFRnnCell; | |||
if (constants is not null) | |||
@@ -305,22 +561,51 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
throw new ValueError( | |||
$"RNN cell {_cell} does not support constants." + | |||
======= | |||
var cell_call_fn = cell.Call; | |||
Func<Tensors, Tensors, (Tensors, Tensors)> step; | |||
if (constants != null) | |||
{ | |||
ParameterInfo[] parameters = cell_call_fn.GetMethodInfo().GetParameters(); | |||
bool hasParam = parameters.Any(p => p.Name == "constants"); | |||
if (!hasParam) | |||
{ | |||
throw new ValueError( | |||
$"RNN cell {cell} does not support constants." + | |||
>>>>>>> master | |||
$"Received: constants={constants}"); | |||
} | |||
step = (inputs, states) => | |||
{ | |||
<<<<<<< HEAD | |||
constants = new Tensors(states.TakeLast(_num_constants)); | |||
states = new Tensors(states.SkipLast(_num_constants)); | |||
states = len(states) == 1 && is_tf_rnn_cell ? new Tensors(states[0]) : states; | |||
var (output, new_states) = _cell.Apply(inputs, states, optional_args: new RnnOptionalArgs() { Constants = constants }); | |||
return (output, new_states.Single); | |||
======= | |||
// constants = states[-self._num_constants :] | |||
constants = states.numpy()[new Slice(states.Length - _num_constants, states.Length)]; | |||
// states = states[: -self._num_constants] | |||
states = states.numpy()[new Slice(0, states.Length - _num_constants)]; | |||
// states = (states[0] if len(states) == 1 and is_tf_rnn_cell else states) | |||
states = states.Length == 1 ? states[0] : states; | |||
var (output, new_states) = cell_call_fn(inputs, null, null, states, constants); | |||
// TODO(Wanglongzhi2001),should cell_call_fn's return value be Tensors, Tensors? | |||
if (!nest.is_nested(new_states)) | |||
{ | |||
return (output, new Tensors { new_states }); | |||
} | |||
return (output, new_states); | |||
>>>>>>> master | |||
}; | |||
} | |||
else | |||
{ | |||
step = (inputs, states) => | |||
{ | |||
<<<<<<< HEAD | |||
states = len(states) == 1 && is_tf_rnn_cell ? new Tensors(states.First()) : states; | |||
var (output, new_states) = _cell.Apply(inputs, states); | |||
return (output, new_states); | |||
@@ -350,14 +635,55 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
// TODO(Rinne): add go_backwards parameter and revise the `row_length` param | |||
output = keras.backend.maybe_convert_to_ragged(is_ragged_input, outputs, row_length, false); | |||
======= | |||
// states = (states[0] if len(states) == 1 and is_tf_rnn_cell else states) | |||
states = states.Length == 1 ? states[0] : states; | |||
var (output, new_states) = cell_call_fn(inputs, null, null, states, constants); | |||
if (!nest.is_nested(new_states)) | |||
{ | |||
return (output, new Tensors { new_states }); | |||
} | |||
return (output, new_states); | |||
}; | |||
} | |||
var (last_output, outputs, states) = BackendImpl.rnn(step, | |||
inputs, | |||
initial_state, | |||
constants: constants, | |||
go_backwards: args.GoBackwards, | |||
mask: mask, | |||
unroll: args.Unroll, | |||
input_length: row_length != null ? new Tensor(row_length) : new Tensor(timesteps), | |||
time_major: args.TimeMajor, | |||
zero_output_for_mask: args.ZeroOutputForMask, | |||
return_all_outputs: args.ReturnSequences); | |||
if (args.Stateful) | |||
{ | |||
throw new NotImplementedException("this argument havn't been developed!"); | |||
} | |||
Tensors output = new Tensors(); | |||
if (args.ReturnSequences) | |||
{ | |||
throw new NotImplementedException("this argument havn't been developed!"); | |||
>>>>>>> master | |||
} | |||
else | |||
{ | |||
output = last_output; | |||
} | |||
<<<<<<< HEAD | |||
if (_args.ReturnState) | |||
{ | |||
======= | |||
if (args.ReturnState) | |||
{ | |||
>>>>>>> master | |||
foreach (var state in states) | |||
{ | |||
output.Add(state); | |||
@@ -370,6 +696,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
} | |||
} | |||
<<<<<<< HEAD | |||
public override Tensors Apply(Tensors inputs, Tensors initial_states = null, bool training = false, IOptionalArgs? optional_args = null) | |||
{ | |||
RnnOptionalArgs? rnn_optional_args = optional_args as RnnOptionalArgs; | |||
@@ -401,25 +728,52 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
initial_state = new Tensors(inputs.Skip(1).SkipLast(_num_constants)); | |||
constants = new Tensors(inputs.TakeLast(_num_constants)); | |||
======= | |||
private (Tensors inputs, Tensors initial_state, Tensors constants) _process_inputs(Tensor inputs, Tensors initial_state, Tensors constants) | |||
{ | |||
if (nest.is_sequence(input)) | |||
{ | |||
if (_num_constants != 0) | |||
{ | |||
initial_state = inputs[new Slice(1, len(inputs))]; | |||
} | |||
else | |||
{ | |||
initial_state = inputs[new Slice(1, len(inputs) - _num_constants)]; | |||
constants = inputs[new Slice(len(inputs) - _num_constants, len(inputs))]; | |||
>>>>>>> master | |||
} | |||
if (len(initial_state) == 0) | |||
initial_state = null; | |||
inputs = inputs[0]; | |||
} | |||
<<<<<<< HEAD | |||
if (_args.Stateful) | |||
======= | |||
if (args.Stateful) | |||
>>>>>>> master | |||
{ | |||
if (initial_state != null) | |||
{ | |||
var tmp = new Tensor[] { }; | |||
foreach (var s in nest.flatten(States)) | |||
{ | |||
<<<<<<< HEAD | |||
tmp.add(tf.math.count_nonzero(s.Single())); | |||
} | |||
var non_zero_count = tf.add_n(tmp); | |||
//initial_state = tf.cond(non_zero_count > 0, () => States, () => initial_state); | |||
if ((int)non_zero_count.numpy() > 0) | |||
======= | |||
tmp.add(tf.math.count_nonzero((Tensor)s)); | |||
} | |||
var non_zero_count = tf.add_n(tmp); | |||
//initial_state = tf.cond(non_zero_count > 0, () => States, () => initial_state); | |||
if((int)non_zero_count.numpy() > 0) | |||
>>>>>>> master | |||
{ | |||
initial_state = States; | |||
} | |||
@@ -428,6 +782,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
initial_state = States; | |||
} | |||
<<<<<<< HEAD | |||
// TODO(Wanglongzhi2001), | |||
// initial_state = tf.nest.map_structure( | |||
//# When the layer has a inferred dtype, use the dtype from the | |||
@@ -440,15 +795,27 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
} | |||
else if (initial_state is null) | |||
======= | |||
} | |||
else if(initial_state != null) | |||
>>>>>>> master | |||
{ | |||
initial_state = get_initial_state(inputs); | |||
} | |||
if (initial_state.Length != States.Length) | |||
{ | |||
<<<<<<< HEAD | |||
throw new ValueError($"Layer {this} expects {States.Length} state(s), " + | |||
$"but it received {initial_state.Length} " + | |||
$"initial state(s). Input received: {inputs}"); | |||
======= | |||
throw new ValueError( | |||
$"Layer {this} expects {States.Length} state(s), " + | |||
$"but it received {initial_state.Length} " + | |||
$"initial state(s). Input received: {inputs}"); | |||
>>>>>>> master | |||
} | |||
return (inputs, initial_state, constants); | |||
@@ -456,12 +823,20 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
private void _validate_args_if_ragged(bool is_ragged_input, Tensors mask) | |||
{ | |||
<<<<<<< HEAD | |||
if (!is_ragged_input) | |||
======= | |||
if (!is_ragged_input) | |||
>>>>>>> master | |||
{ | |||
return; | |||
} | |||
<<<<<<< HEAD | |||
if (_args.Unroll) | |||
======= | |||
if (args.Unroll) | |||
>>>>>>> master | |||
{ | |||
throw new ValueError("The input received contains RaggedTensors and does " + | |||
"not support unrolling. Disable unrolling by passing " + | |||
@@ -479,11 +854,19 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
void _maybe_reset_cell_dropout_mask(ILayer cell) | |||
{ | |||
<<<<<<< HEAD | |||
if (cell is DropoutRNNCellMixin CellDRCMixin) | |||
{ | |||
CellDRCMixin.reset_dropout_mask(); | |||
CellDRCMixin.reset_recurrent_dropout_mask(); | |||
} | |||
======= | |||
//if (cell is DropoutRNNCellMixin) | |||
//{ | |||
// cell.reset_dropout_mask(); | |||
// cell.reset_recurrent_dropout_mask(); | |||
//} | |||
>>>>>>> master | |||
} | |||
private static RNNArgs PreConstruct(RNNArgs args) | |||
@@ -516,6 +899,81 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
public Tensors __call__(Tensors inputs, Tensor state = null, Tensor training = null) | |||
{ | |||
throw new NotImplementedException(); | |||
<<<<<<< HEAD | |||
======= | |||
} | |||
// 好像不能cell不能传接口类型 | |||
//public RNN New(IRnnArgCell cell, | |||
// bool return_sequences = false, | |||
// bool return_state = false, | |||
// bool go_backwards = false, | |||
// bool stateful = false, | |||
// bool unroll = false, | |||
// bool time_major = false) | |||
// => new RNN(new RNNArgs | |||
// { | |||
// Cell = cell, | |||
// ReturnSequences = return_sequences, | |||
// ReturnState = return_state, | |||
// GoBackwards = go_backwards, | |||
// Stateful = stateful, | |||
// Unroll = unroll, | |||
// TimeMajor = time_major | |||
// }); | |||
//public RNN New(List<IRnnArgCell> cell, | |||
// bool return_sequences = false, | |||
// bool return_state = false, | |||
// bool go_backwards = false, | |||
// bool stateful = false, | |||
// bool unroll = false, | |||
// bool time_major = false) | |||
// => new RNN(new RNNArgs | |||
// { | |||
// Cell = cell, | |||
// ReturnSequences = return_sequences, | |||
// ReturnState = return_state, | |||
// GoBackwards = go_backwards, | |||
// Stateful = stateful, | |||
// Unroll = unroll, | |||
// TimeMajor = time_major | |||
// }); | |||
protected Tensors get_initial_state(Tensor inputs) | |||
{ | |||
Type type = cell.GetType(); | |||
MethodInfo MethodInfo = type.GetMethod("get_initial_state"); | |||
if (nest.is_nested(inputs)) | |||
{ | |||
// The input are nested sequences. Use the first element in the seq | |||
// to get batch size and dtype. | |||
inputs = nest.flatten(inputs)[0]; | |||
} | |||
var input_shape = tf.shape(inputs); | |||
var batch_size = args.TimeMajor ? input_shape[1] : input_shape[0]; | |||
var dtype = inputs.dtype; | |||
Tensor init_state; | |||
if (MethodInfo != null) | |||
{ | |||
init_state = (Tensor)MethodInfo.Invoke(cell, new object[] { null, batch_size, dtype }); | |||
} | |||
else | |||
{ | |||
init_state = RNNUtils.generate_zero_filled_state(batch_size, cell.state_size, dtype); | |||
} | |||
//if (!nest.is_nested(init_state)) | |||
//{ | |||
// init_state = new List<Tensor> { init_state}; | |||
//} | |||
return new List<Tensor> { init_state }; | |||
//return _generate_zero_filled_state_for_cell(null, null); | |||
>>>>>>> master | |||
} | |||
// 好像不能cell不能传接口类型 | |||
@@ -585,7 +1043,11 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
} | |||
// Check whether the state_size contains multiple states. | |||
<<<<<<< HEAD | |||
public static bool is_multiple_state(GeneralizedTensorShape state_size) | |||
======= | |||
public static bool is_multiple_state(object state_size) | |||
>>>>>>> master | |||
{ | |||
return state_size.Shapes.Length > 1; | |||
} | |||
@@ -0,0 +1,59 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Util; | |||
using OneOf; | |||
using Tensorflow.NumPy; | |||
namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
public class RNNUtils | |||
{ | |||
public static Tensor generate_zero_filled_state(Tensor batch_size_tensor, StateSizeWrapper state_size, TF_DataType dtype = TF_DataType.TF_FLOAT) | |||
{ | |||
if (batch_size_tensor == null || dtype == null) | |||
{ | |||
throw new ValueError( | |||
"batch_size and dtype cannot be None while constructing initial " + | |||
$"state. Received: batch_size={batch_size_tensor}, dtype={dtype}"); | |||
} | |||
Func<StateSizeWrapper, Tensor> create_zeros; | |||
create_zeros = (StateSizeWrapper unnested_state_size) => | |||
{ | |||
var flat_dims = unnested_state_size.state_size; | |||
//if (unnested_state_size is int[]) | |||
//{ | |||
// flat_dims = new Shape(unnested_state_size.AsT0).as_int_list(); | |||
//} | |||
//else if (unnested_state_size.IsT1) | |||
//{ | |||
// flat_dims = new Shape(unnested_state_size.AsT1).as_int_list(); | |||
//} | |||
var init_state_size = batch_size_tensor.ToArray<int>().concat(flat_dims); | |||
return tf.zeros(init_state_size, dtype: dtype); | |||
}; | |||
//if (nest.is_nested(state_size)) | |||
//{ | |||
// return nest.map_structure(create_zeros, state_size); | |||
//} | |||
//else | |||
//{ | |||
// return create_zeros(state_size); | |||
//} | |||
return create_zeros(state_size); | |||
} | |||
public static Tensor generate_zero_filled_state_for_cell(SimpleRNNCell cell, Tensors inputs, Tensor batch_size, TF_DataType dtype) | |||
{ | |||
if (inputs != null) | |||
{ | |||
batch_size = tf.shape(inputs)[0]; | |||
dtype = inputs.dtype; | |||
} | |||
return generate_zero_filled_state(batch_size, cell.state_size, dtype); | |||
} | |||
} | |||
} |
@@ -4,9 +4,13 @@ using System.Text; | |||
using Tensorflow.Keras.ArgsDefinition.Rnn; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Saving; | |||
<<<<<<< HEAD | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Common.Extensions; | |||
using Tensorflow.Keras.Utils; | |||
======= | |||
using Tensorflow.Util; | |||
>>>>>>> master | |||
namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
@@ -19,6 +23,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
/// </summary> | |||
public class SimpleRNNCell : DropoutRNNCellMixin | |||
{ | |||
<<<<<<< HEAD | |||
SimpleRNNCellArgs _args; | |||
IVariableV1 _kernel; | |||
IVariableV1 _recurrent_kernel; | |||
@@ -34,15 +39,36 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
public SimpleRNNCell(SimpleRNNCellArgs args) : base(args) | |||
{ | |||
this._args = args; | |||
======= | |||
SimpleRNNArgs args; | |||
IVariableV1 kernel; | |||
IVariableV1 recurrent_kernel; | |||
IVariableV1 bias; | |||
DropoutRNNCellMixin DRCMixin; | |||
public SimpleRNNCell(SimpleRNNArgs args) : base(args) | |||
{ | |||
this.args = args; | |||
>>>>>>> master | |||
if (args.Units <= 0) | |||
{ | |||
throw new ValueError( | |||
$"units must be a positive integer, got {args.Units}"); | |||
} | |||
<<<<<<< HEAD | |||
this._args.Dropout = Math.Min(1f, Math.Max(0f, this._args.Dropout)); | |||
this._args.RecurrentDropout = Math.Min(1f, Math.Max(0f, this._args.RecurrentDropout)); | |||
_state_size = new GeneralizedTensorShape(args.Units); | |||
_output_size = new GeneralizedTensorShape(args.Units); | |||
======= | |||
this.args.Dropout = Math.Min(1f, Math.Max(0f, this.args.Dropout)); | |||
this.args.RecurrentDropout = Math.Min(1f, Math.Max(0f, this.args.RecurrentDropout)); | |||
this.args.state_size = this.args.Units; | |||
this.args.output_size = this.args.Units; | |||
DRCMixin = new DropoutRNNCellMixin(); | |||
DRCMixin.dropout = this.args.Dropout; | |||
DRCMixin.recurrent_dropout = this.args.RecurrentDropout; | |||
>>>>>>> master | |||
} | |||
public override void build(KerasShapesWrapper input_shape) | |||
@@ -69,6 +95,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
built = true; | |||
} | |||
<<<<<<< HEAD | |||
// TODO(Rinne): revise the trining param (with refactoring of the framework) | |||
protected override Tensors Call(Tensors inputs, Tensors states = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
@@ -76,11 +103,20 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
Tensors prev_output = Nest.IsNested(states) ? new Tensors(states[0]) : states; | |||
var dp_mask = get_dropout_mask_for_cell(inputs, training.Value); | |||
var rec_dp_mask = get_recurrent_dropout_mask_for_cell(prev_output, training.Value); | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
{ | |||
Tensor states = initial_state[0]; | |||
var prev_output = nest.is_nested(states) ? states[0] : states; | |||
var dp_mask = DRCMixin.get_dropout_maskcell_for_cell(inputs, training.Value); | |||
var rec_dp_mask = DRCMixin.get_recurrent_dropout_maskcell_for_cell(prev_output, training.Value); | |||
>>>>>>> master | |||
Tensor h; | |||
var ranks = inputs.rank; | |||
if (dp_mask != null) | |||
{ | |||
<<<<<<< HEAD | |||
h = math_ops.matmul(math_ops.multiply(inputs.Single, dp_mask.Single), _kernel.AsTensor()); | |||
} | |||
@@ -92,10 +128,38 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
if (_bias != null) | |||
{ | |||
h = tf.nn.bias_add(h, _bias); | |||
======= | |||
if (ranks > 2) | |||
{ | |||
// 因为multiply函数会自动添加第一个维度,所以加上下标0 | |||
h = tf.linalg.tensordot(math_ops.multiply(inputs, dp_mask)[0], kernel.AsTensor(), new[,] { { ranks - 1 }, { 0 } }); | |||
} | |||
else | |||
{ | |||
h = math_ops.matmul(math_ops.multiply(inputs, dp_mask)[0], kernel.AsTensor()); | |||
} | |||
} | |||
else | |||
{ | |||
if (ranks > 2) | |||
{ | |||
h = tf.linalg.tensordot(inputs, kernel.AsTensor(), new[,] { { ranks - 1 }, { 0 } }); | |||
} | |||
else | |||
{ | |||
h = math_ops.matmul(inputs, kernel.AsTensor()); | |||
} | |||
} | |||
if (bias != null) | |||
{ | |||
h = tf.nn.bias_add(h, bias); | |||
>>>>>>> master | |||
} | |||
if (rec_dp_mask != null) | |||
{ | |||
<<<<<<< HEAD | |||
prev_output = math_ops.multiply(prev_output, rec_dp_mask); | |||
} | |||
@@ -120,6 +184,38 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
public Tensors get_initial_state(Tensors inputs = null, long? batch_size = null, TF_DataType? dtype = null) | |||
{ | |||
return RnnUtils.generate_zero_filled_state_for_cell(this, inputs, batch_size.Value, dtype.Value); | |||
======= | |||
prev_output = math_ops.multiply(prev_output, rec_dp_mask)[0]; | |||
} | |||
ranks = prev_output.rank; | |||
Tensor output; | |||
if (ranks > 2) | |||
{ | |||
output = h + tf.linalg.tensordot(prev_output[0], recurrent_kernel.AsTensor(), new[,] { { ranks - 1 }, { 0 } }); | |||
} | |||
else | |||
{ | |||
output = h + math_ops.matmul(prev_output, recurrent_kernel.AsTensor()); | |||
} | |||
Console.WriteLine($"shape of output: {output.shape}"); | |||
if (args.Activation != null) | |||
{ | |||
output = args.Activation.Apply(output); | |||
} | |||
if (nest.is_nested(states)) | |||
{ | |||
return (output, new Tensors { output }); | |||
} | |||
return (output, output); | |||
} | |||
public Tensor get_initial_state(Tensors inputs, Tensor batch_size, TF_DataType dtype) | |||
{ | |||
return RNNUtils.generate_zero_filled_state_for_cell(this, inputs, batch_size, dtype); | |||
>>>>>>> master | |||
} | |||
} | |||
} |
@@ -5,9 +5,10 @@ using System.Linq; | |||
using Tensorflow.Common.Extensions; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.ArgsDefinition.Rnn; | |||
using static Tensorflow.Keras.ArgsDefinition.Rnn.RNNArgs; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Saving; | |||
<<<<<<< HEAD | |||
using Tensorflow.Keras.Utils; | |||
namespace Tensorflow.Keras.Layers.Rnn | |||
@@ -15,6 +16,15 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
public class StackedRNNCells : Layer, IRnnCell | |||
{ | |||
public IList<IRnnCell> Cells { get; set; } | |||
======= | |||
using Tensorflow.Keras.ArgsDefinition.Rnn; | |||
namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
public class StackedRNNCells : Layer | |||
{ | |||
public IList<IRnnArgCell> Cells { get; set; } | |||
>>>>>>> master | |||
public bool reverse_state_order; | |||
public StackedRNNCells(StackedRNNCellsArgs args) : base(args) | |||
@@ -86,7 +96,11 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
return lastCell.OutputSize; | |||
} | |||
<<<<<<< HEAD | |||
else if (RNN.is_multiple_state(lastCell.StateSize)) | |||
======= | |||
else if (RNN.is_multiple_state(lastCell.state_size)) | |||
>>>>>>> master | |||
{ | |||
return lastCell.StateSize.First(); | |||
//throw new NotImplementedException(""); | |||
@@ -98,7 +112,12 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
} | |||
} | |||
<<<<<<< HEAD | |||
public Tensors get_initial_state(Tensors inputs = null, long? batch_size = null, TF_DataType? dtype = null) | |||
======= | |||
public object get_initial_state() | |||
>>>>>>> master | |||
{ | |||
var cells = reverse_state_order ? Cells.Reverse() : Cells; | |||
Tensors initial_states = new Tensors(); | |||
@@ -118,7 +137,11 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
return initial_states; | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
public Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
// Recover per-cell states. | |||
var state_size = reverse_state_order ? StateSize.Reverse() : StateSize; | |||
@@ -35,7 +35,11 @@ namespace Tensorflow.Keras.Layers | |||
built = true; | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
if (tf.Context.executing_eagerly()) | |||
return DeFunCall(inputs); | |||
@@ -90,7 +90,11 @@ namespace Tensorflow.Hub | |||
} | |||
} | |||
<<<<<<< HEAD | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optionalArgs = null) | |||
======= | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
>>>>>>> master | |||
{ | |||
_check_trainability(); | |||
@@ -144,6 +144,34 @@ namespace Tensorflow.Keras.UnitTest.Layers | |||
Assert.AreEqual(expected_output, actual_output); | |||
} | |||
<<<<<<< HEAD | |||
======= | |||
[TestMethod] | |||
public void SimpleRNNCell() | |||
{ | |||
var cell = keras.layers.SimpleRNNCell(64, dropout:0.5f, recurrent_dropout:0.5f); | |||
var h0 = new Tensors { tf.zeros(new Shape(4, 64)) }; | |||
var x = tf.random.normal((4, 100)); | |||
var (y, h1) = cell.Apply(inputs: x, state: h0); | |||
// TODO(Wanglongzhi2001),因为SimpleRNNCell需要返回一个Tensor和一个Tensors,只用一个Tensors的话 | |||
// hold不住,所以自行在外面将h强制转换成Tensors | |||
var h2 = (Tensors)h1; | |||
Assert.AreEqual((4, 64), y.shape); | |||
Assert.AreEqual((4, 64), h2[0].shape); | |||
} | |||
[TestMethod, Ignore("WIP")] | |||
public void SimpleRNN() | |||
{ | |||
var inputs = np.arange(6 * 10 * 8).reshape((6, 10, 8)).astype(np.float32); | |||
/*var simple_rnn = keras.layers.SimpleRNN(4); | |||
var output = simple_rnn.Apply(inputs); | |||
Assert.AreEqual((32, 4), output.shape);*/ | |||
var simple_rnn = tf.keras.layers.SimpleRNN(4, return_sequences: true, return_state: true); | |||
var (whole_sequence_output, final_state) = simple_rnn.Apply(inputs); | |||
} | |||
>>>>>>> master | |||
[TestMethod] | |||
public void Resizing() | |||
{ | |||
@@ -67,4 +67,8 @@ | |||
</None> | |||
</ItemGroup> | |||
<ItemGroup> | |||
<Folder Include="Callbacks\" /> | |||
</ItemGroup> | |||
</Project> |