Metrics and loss methods skeletonizedtags/v0.20
@@ -11,6 +11,8 @@ Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "UnitTest", "test\TensorFlow | |||
EndProject | |||
Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Tensorflow.Keras", "src\TensorFlowNET.Keras\Tensorflow.Keras.csproj", "{6268B461-486A-460B-9B3C-86493CBBAAF7}" | |||
EndProject | |||
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "Tensorflow.Keras.UnitTest", "test\Tensorflow.Keras.UnitTest\Tensorflow.Keras.UnitTest.csproj", "{EB92DD90-6346-41FB-B967-2B33A860AD98}" | |||
EndProject | |||
Global | |||
GlobalSection(SolutionConfigurationPlatforms) = preSolution | |||
Debug|Any CPU = Debug|Any CPU | |||
@@ -51,6 +53,14 @@ Global | |||
{6268B461-486A-460B-9B3C-86493CBBAAF7}.Release|Any CPU.Build.0 = Release|Any CPU | |||
{6268B461-486A-460B-9B3C-86493CBBAAF7}.Release|x64.ActiveCfg = Release|Any CPU | |||
{6268B461-486A-460B-9B3C-86493CBBAAF7}.Release|x64.Build.0 = Release|Any CPU | |||
{EB92DD90-6346-41FB-B967-2B33A860AD98}.Debug|Any CPU.ActiveCfg = Debug|Any CPU | |||
{EB92DD90-6346-41FB-B967-2B33A860AD98}.Debug|Any CPU.Build.0 = Debug|Any CPU | |||
{EB92DD90-6346-41FB-B967-2B33A860AD98}.Debug|x64.ActiveCfg = Debug|Any CPU | |||
{EB92DD90-6346-41FB-B967-2B33A860AD98}.Debug|x64.Build.0 = Debug|Any CPU | |||
{EB92DD90-6346-41FB-B967-2B33A860AD98}.Release|Any CPU.ActiveCfg = Release|Any CPU | |||
{EB92DD90-6346-41FB-B967-2B33A860AD98}.Release|Any CPU.Build.0 = Release|Any CPU | |||
{EB92DD90-6346-41FB-B967-2B33A860AD98}.Release|x64.ActiveCfg = Release|Any CPU | |||
{EB92DD90-6346-41FB-B967-2B33A860AD98}.Release|x64.Build.0 = Release|Any CPU | |||
EndGlobalSection | |||
GlobalSection(SolutionProperties) = preSolution | |||
HideSolutionNode = FALSE | |||
@@ -0,0 +1,29 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras | |||
{ | |||
public class Args | |||
{ | |||
private List<object> args = new List<object>(); | |||
public object this[int index] | |||
{ | |||
get | |||
{ | |||
return args.Count < index ? args[index] : null; | |||
} | |||
} | |||
public T Get<T>(int index) | |||
{ | |||
return args.Count < index ? (T)args[index] : default(T); | |||
} | |||
public void Add<T>(T arg) | |||
{ | |||
args.Add(arg); | |||
} | |||
} | |||
} |
@@ -20,7 +20,7 @@ namespace Tensorflow.Keras.Engine | |||
} | |||
public void enter(Layer layer, Tensor[] inputs, Graph build_graph, bool training, Saving saving = null) => throw new NotImplementedException(); | |||
public void enter(Layer layer, Tensor[] inputs, Graph build_graph, bool training) => throw new NotImplementedException(); | |||
public bool training_arg_passed_to_call(string[] argspec, Dictionary<string, object> args, Dictionary<string, object> kwargs) => throw new NotImplementedException(); | |||
@@ -4,7 +4,7 @@ using System.Text; | |||
namespace Tensorflow.Keras.Engine | |||
{ | |||
class Node | |||
public class Node | |||
{ | |||
} | |||
} |
@@ -1,10 +0,0 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras.Engine | |||
{ | |||
public class Saving | |||
{ | |||
} | |||
} |
@@ -4,7 +4,8 @@ using System.Text; | |||
namespace Tensorflow.Keras.Engine | |||
{ | |||
class Sequential | |||
public class Sequential | |||
{ | |||
} | |||
} |
@@ -0,0 +1,43 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras | |||
{ | |||
public class KwArgs | |||
{ | |||
private Dictionary<string, object> args = new Dictionary<string, object>(); | |||
public object this[string name] | |||
{ | |||
get | |||
{ | |||
return args.ContainsKey(name) ? args[name] : null; | |||
} | |||
set | |||
{ | |||
args[name] = value; | |||
} | |||
} | |||
public T Get<T>(string name) | |||
{ | |||
if (!args.ContainsKey(name)) | |||
return default(T); | |||
return (T)args[name]; | |||
} | |||
public static explicit operator KwArgs(ValueTuple<string, object>[] p) | |||
{ | |||
KwArgs kwArgs = new KwArgs(); | |||
kwArgs.args = new Dictionary<string, object>(); | |||
foreach (var item in p) | |||
{ | |||
kwArgs.args[item.Item1] = item.Item2; | |||
} | |||
return kwArgs; | |||
} | |||
} | |||
} |
@@ -6,5 +6,36 @@ namespace Tensorflow.Keras.Losses | |||
{ | |||
public abstract class Loss | |||
{ | |||
public static Tensor mean_squared_error(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
public static Tensor mean_absolute_error(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
public static Tensor mean_absolute_percentage_error(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
public static Tensor mean_squared_logarithmic_error(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
public static Tensor _maybe_convert_labels(Tensor y_true) => throw new NotImplementedException(); | |||
public static Tensor squared_hinge(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
public static Tensor hinge(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
public static Tensor categorical_hinge(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
public static Tensor huber_loss(Tensor y_true, Tensor y_pred, float delta = 1) => throw new NotImplementedException(); | |||
public static Tensor logcosh(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
public static Tensor categorical_crossentropy(Tensor y_true, Tensor y_pred, bool from_logits = false, float label_smoothing = 0) => throw new NotImplementedException(); | |||
public static Tensor sparse_categorical_crossentropy(Tensor y_true, Tensor y_pred, bool from_logits = false, float axis = -1) => throw new NotImplementedException(); | |||
public static Tensor binary_crossentropy(Tensor y_true, Tensor y_pred, bool from_logits = false, float label_smoothing = 0) => throw new NotImplementedException(); | |||
public static Tensor kullback_leibler_divergence(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
public static Tensor poisson(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
public static Tensor cosine_similarity(Tensor y_true, Tensor y_pred, int axis = -1) => throw new NotImplementedException(); | |||
} | |||
} |
@@ -1,10 +1,41 @@ | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class AUC | |||
public class AUC : Metric | |||
{ | |||
public AUC(int num_thresholds= 200, string curve= "ROC", string summation_method= "interpolation", | |||
string name= null, string dtype= null, float thresholds= 0.5f, | |||
bool multi_label= false, Tensor label_weights= null) : base(name, dtype) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
private void _build(TensorShape shape) => throw new NotImplementedException(); | |||
public Tensor interpolate_pr_auc() => throw new NotImplementedException(); | |||
public override Tensor result() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override void update_state(Args args, KwArgs kwargs) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override void reset_states() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Hashtable get_config() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -4,7 +4,11 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class Accuracy | |||
public class Accuracy : MeanMetricWrapper | |||
{ | |||
public Accuracy(string name = "accuracy", string dtype = null) | |||
: base(Metric.accuracy, name, dtype) | |||
{ | |||
} | |||
} | |||
} |
@@ -4,7 +4,16 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class BinaryAccuracy | |||
public class BinaryAccuracy : MeanMetricWrapper | |||
{ | |||
public BinaryAccuracy(string name = "binary_accuracy", string dtype = null, float threshold = 0.5f) | |||
: base(Fn, name, dtype) | |||
{ | |||
} | |||
internal static Tensor Fn(Tensor y_true, Tensor y_pred) | |||
{ | |||
return Metric.binary_accuracy(y_true, y_pred); | |||
} | |||
} | |||
} |
@@ -4,7 +4,16 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class BinaryCrossentropy | |||
public class BinaryCrossentropy : MeanMetricWrapper | |||
{ | |||
public BinaryCrossentropy(string name = "binary_crossentropy", string dtype = null, bool from_logits = false, float label_smoothing = 0) | |||
: base(Fn, name, dtype) | |||
{ | |||
} | |||
internal static Tensor Fn(Tensor y_true, Tensor y_pred) | |||
{ | |||
return Losses.Loss.binary_crossentropy(y_true, y_pred); | |||
} | |||
} | |||
} |
@@ -4,7 +4,11 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class CategoricalAccuracy | |||
public class CategoricalAccuracy : MeanMetricWrapper | |||
{ | |||
public CategoricalAccuracy(string name = "categorical_accuracy", string dtype = null) | |||
: base(Metric.categorical_accuracy, name, dtype) | |||
{ | |||
} | |||
} | |||
} |
@@ -4,7 +4,16 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class CategoricalCrossentropy | |||
public class CategoricalCrossentropy : MeanMetricWrapper | |||
{ | |||
public CategoricalCrossentropy(string name = "categorical_crossentropy", string dtype = null, bool from_logits = false, float label_smoothing = 0) | |||
: base(Fn, name, dtype) | |||
{ | |||
} | |||
internal static Tensor Fn(Tensor y_true, Tensor y_pred) | |||
{ | |||
return Losses.Loss.categorical_crossentropy(y_true, y_pred); | |||
} | |||
} | |||
} |
@@ -4,7 +4,11 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class CategoricalHinge | |||
public class CategoricalHinge : MeanMetricWrapper | |||
{ | |||
public CategoricalHinge(string name = "categorical_hinge", string dtype = null) | |||
: base(Losses.Loss.categorical_hinge, name, dtype) | |||
{ | |||
} | |||
} | |||
} |
@@ -4,7 +4,16 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class CosineSimilarity | |||
public class CosineSimilarity : MeanMetricWrapper | |||
{ | |||
public CosineSimilarity(string name = "cosine_similarity", string dtype = null, int axis = -1) | |||
: base(Fn, name, dtype) | |||
{ | |||
} | |||
internal static Tensor Fn(Tensor y_true, Tensor y_pred) | |||
{ | |||
return Metric.cosine_proximity(y_true, y_pred); | |||
} | |||
} | |||
} |
@@ -4,7 +4,11 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class FalseNegatives | |||
public class FalseNegatives : _ConfusionMatrixConditionCount | |||
{ | |||
public FalseNegatives(float thresholds = 0.5F, string name = null, string dtype = null) | |||
: base(Utils.MetricsUtils.ConfusionMatrix.FALSE_NEGATIVES, thresholds, name, dtype) | |||
{ | |||
} | |||
} | |||
} |
@@ -4,7 +4,11 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class FalsePositives | |||
public class FalsePositives : _ConfusionMatrixConditionCount | |||
{ | |||
public FalsePositives(float thresholds = 0.5F, string name = null, string dtype = null) | |||
: base(Utils.MetricsUtils.ConfusionMatrix.FALSE_POSITIVES, thresholds, name, dtype) | |||
{ | |||
} | |||
} | |||
} |
@@ -4,7 +4,11 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class Hinge | |||
public class Hinge : MeanMetricWrapper | |||
{ | |||
public Hinge(string name = "hinge", string dtype = null) | |||
: base(Losses.Loss.hinge, name, dtype) | |||
{ | |||
} | |||
} | |||
} |
@@ -4,7 +4,11 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class KLDivergence | |||
public class KLDivergence : MeanMetricWrapper | |||
{ | |||
public KLDivergence(string name = "kullback_leibler_divergence", string dtype = null) | |||
: base(Losses.Loss.logcosh, name, dtype) | |||
{ | |||
} | |||
} | |||
} |
@@ -4,7 +4,11 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class LogCoshError | |||
public class LogCoshError : MeanMetricWrapper | |||
{ | |||
public LogCoshError(string name = "logcosh", string dtype = null) | |||
: base(Losses.Loss.logcosh, name, dtype) | |||
{ | |||
} | |||
} | |||
} |
@@ -4,7 +4,12 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class Mean | |||
public class Mean : Reduce | |||
{ | |||
public Mean(string name, string dtype = null) | |||
: base(Reduction.MEAN, name, dtype) | |||
{ | |||
} | |||
} | |||
} |
@@ -4,7 +4,11 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class MeanAbsoluteError | |||
public class MeanAbsoluteError : MeanMetricWrapper | |||
{ | |||
public MeanAbsoluteError(string name = "mean_absolute_error", string dtype = null) | |||
: base(Losses.Loss.mean_absolute_error, name, dtype) | |||
{ | |||
} | |||
} | |||
} |
@@ -4,7 +4,11 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class MeanAbsolutePercentageError | |||
public class MeanAbsolutePercentageError : MeanMetricWrapper | |||
{ | |||
public MeanAbsolutePercentageError(string name = "mean_absolute_percentage_error", string dtype = null) | |||
: base(Losses.Loss.mean_absolute_percentage_error, name, dtype) | |||
{ | |||
} | |||
} | |||
} |
@@ -1,10 +1,34 @@ | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class MeanIoU | |||
public class MeanIoU : Metric | |||
{ | |||
public MeanIoU(int num_classes, string name, string dtype) : base(name, dtype) | |||
{ | |||
} | |||
public override void reset_states() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Hashtable get_config() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Tensor result() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override void update_state(Args args, KwArgs kwargs) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -1,10 +1,25 @@ | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class MeanMetricWrapper | |||
public class MeanMetricWrapper : Mean | |||
{ | |||
public MeanMetricWrapper(Func<Tensor, Tensor, Tensor> fn, string name, string dtype = null) : base(name, dtype) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Tensor result() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Hashtable get_config() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -1,10 +1,30 @@ | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class MeanRelativeError | |||
public class MeanRelativeError : Metric | |||
{ | |||
public MeanRelativeError(Tensor normalizer, string name, string dtype) : base(name, dtype) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Tensor result() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override void update_state(Args args, KwArgs kwargs) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Hashtable get_config() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -4,7 +4,11 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class MeanSquaredError | |||
public class MeanSquaredError : MeanMetricWrapper | |||
{ | |||
public MeanSquaredError(string name = "mean_squared_error", string dtype = null) | |||
: base(Losses.Loss.mean_squared_error, name, dtype) | |||
{ | |||
} | |||
} | |||
} |
@@ -4,7 +4,11 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class MeanSquaredLogarithmicError | |||
public class MeanSquaredLogarithmicError : MeanMetricWrapper | |||
{ | |||
public MeanSquaredLogarithmicError(string name = "mean_squared_logarithmic_error", string dtype = null) | |||
: base(Losses.Loss.mean_squared_logarithmic_error, name, dtype) | |||
{ | |||
} | |||
} | |||
} |
@@ -4,7 +4,44 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class MeanTensor | |||
public class MeanTensor : Metric | |||
{ | |||
public int total | |||
{ | |||
get | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
public int count | |||
{ | |||
get | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
public MeanTensor(int num_classes, string name = "mean_tensor", string dtype = null) : base(name, dtype) | |||
{ | |||
} | |||
private void _build(TensorShape shape) => throw new NotImplementedException(); | |||
public override void reset_states() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Tensor result() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override void update_state(Args args, KwArgs kwargs) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -1,10 +1,63 @@ | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
public abstract class Metric | |||
public abstract class Metric : Layers.Layer | |||
{ | |||
public string dtype | |||
{ | |||
get | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
public Metric(string name, string dtype) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public void __new__ (Metric cls, Args args, KwArgs kwargs) => throw new NotImplementedException(); | |||
public Tensor __call__(Metric cls, Args args, KwArgs kwargs) => throw new NotImplementedException(); | |||
public virtual Hashtable get_config() => throw new NotImplementedException(); | |||
public virtual void reset_states() => throw new NotImplementedException(); | |||
public abstract void update_state(Args args, KwArgs kwargs); | |||
public abstract Tensor result(); | |||
public void add_weight(string name, TensorShape shape= null, VariableAggregation aggregation= VariableAggregation.Sum, | |||
VariableSynchronization synchronization = VariableSynchronization.OnRead, Initializers.Initializer initializer= null, | |||
string dtype= null) => throw new NotImplementedException(); | |||
public static Tensor accuracy(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
public static Tensor binary_accuracy(Tensor y_true, Tensor y_pred, float threshold = 0.5f) => throw new NotImplementedException(); | |||
public static Tensor categorical_accuracy(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
public static Tensor sparse_categorical_accuracy(Tensor y_true, Tensor y_pred) => throw new NotImplementedException(); | |||
public static Tensor top_k_categorical_accuracy(Tensor y_true, Tensor y_pred, int k = 5) => throw new NotImplementedException(); | |||
public static Tensor sparse_top_k_categorical_accuracy(Tensor y_true, Tensor y_pred, int k = 5) => throw new NotImplementedException(); | |||
public static Tensor cosine_proximity(Tensor y_true, Tensor y_pred, int axis = -1) => throw new NotImplementedException(); | |||
public static Metric clone_metric(Metric metric) => throw new NotImplementedException(); | |||
public static Metric[] clone_metrics(Metric[] metric) => throw new NotImplementedException(); | |||
public static string serialize(Metric metric) => throw new NotImplementedException(); | |||
public static Metric deserialize(string config, object custom_objects = null) => throw new NotImplementedException(); | |||
public static Metric get(object identifier) => throw new NotImplementedException(); | |||
} | |||
} |
@@ -4,7 +4,11 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class Poisson | |||
public class Poisson : MeanMetricWrapper | |||
{ | |||
public Poisson(string name = "logcosh", string dtype = null) | |||
: base(Losses.Loss.logcosh, name, dtype) | |||
{ | |||
} | |||
} | |||
} |
@@ -1,10 +1,41 @@ | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class Precision | |||
public class Precision : Metric | |||
{ | |||
public Precision(float? thresholds = null, int? top_k = null, int? class_id = null, string name = null, string dtype = null) : base(name, dtype) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public Precision(float[] thresholds = null, int? top_k = null, int? class_id = null, string name = null, string dtype = null) : base(name, dtype) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Tensor result() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override void update_state(Args args, KwArgs kwargs) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override void reset_states() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Hashtable get_config() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -1,10 +1,25 @@ | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class PrecisionAtRecall | |||
public class PrecisionAtRecall : SensitivitySpecificityBase | |||
{ | |||
public PrecisionAtRecall(float recall, int num_thresholds = 200, string name = null, string dtype = null) : base(recall, num_thresholds, name, dtype) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Tensor result() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Hashtable get_config() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -1,10 +1,41 @@ | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class Recall | |||
public class Recall : Metric | |||
{ | |||
public Recall(float? thresholds = null, int? top_k = null, int? class_id = null, string name = null, string dtype = null) : base(name, dtype) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public Recall(float[] thresholds = null, int? top_k = null, int? class_id = null, string name = null, string dtype = null) : base(name, dtype) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Tensor result() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override void update_state(Args args, KwArgs kwargs) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override void reset_states() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Hashtable get_config() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -4,7 +4,22 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class Reduce | |||
public class Reduce : Metric | |||
{ | |||
public Reduce(string reduction, string name, string dtype= null) | |||
: base(name, dtype) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Tensor result() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override void update_state(Args args, KwArgs kwargs) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -4,7 +4,11 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class RootMeanSquaredError | |||
public class RootMeanSquaredError : Mean | |||
{ | |||
public RootMeanSquaredError(string name = "root_mean_squared_error", string dtype = null) | |||
: base(name, dtype) | |||
{ | |||
} | |||
} | |||
} |
@@ -1,10 +1,25 @@ | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class SensitivityAtSpecificity | |||
public class SensitivityAtSpecificity : SensitivitySpecificityBase | |||
{ | |||
public SensitivityAtSpecificity(float specificity, int num_thresholds = 200, string name = null, string dtype = null) : base(specificity, num_thresholds, name, dtype) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Tensor result() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Hashtable get_config() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -4,7 +4,26 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class SensitivitySpecificityBase | |||
public class SensitivitySpecificityBase : Metric | |||
{ | |||
public SensitivitySpecificityBase(float value, int num_thresholds= 200, string name = null, string dtype = null) : base(name, dtype) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Tensor result() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override void update_state(Args args, KwArgs kwargs) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override void reset_states() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -4,7 +4,12 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class SparseCategoricalAccuracy | |||
public class SparseCategoricalAccuracy : MeanMetricWrapper | |||
{ | |||
public SparseCategoricalAccuracy(string name = "sparse_categorical_accuracy", string dtype = null) | |||
: base(Metric.sparse_categorical_accuracy, name, dtype) | |||
{ | |||
} | |||
} | |||
} |
@@ -4,7 +4,16 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class SparseCategoricalCrossentropy | |||
public class SparseCategoricalCrossentropy : MeanMetricWrapper | |||
{ | |||
public SparseCategoricalCrossentropy(string name = "sparse_categorical_crossentropy", string dtype = null, bool from_logits = false, int axis = -1) | |||
: base(Fn, name, dtype) | |||
{ | |||
} | |||
internal static Tensor Fn(Tensor y_true, Tensor y_pred) | |||
{ | |||
return Losses.Loss.sparse_categorical_crossentropy(y_true, y_pred); | |||
} | |||
} | |||
} |
@@ -4,7 +4,17 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class SparseTopKCategoricalAccuracy | |||
public class SparseTopKCategoricalAccuracy : MeanMetricWrapper | |||
{ | |||
public SparseTopKCategoricalAccuracy(int k = 5, string name = "sparse_top_k_categorical_accuracy", string dtype = null) | |||
: base(Fn, name, dtype) | |||
{ | |||
} | |||
internal static Tensor Fn(Tensor y_true, Tensor y_pred) | |||
{ | |||
return Metric.sparse_top_k_categorical_accuracy(y_true, y_pred); | |||
} | |||
} | |||
} |
@@ -4,7 +4,11 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class SquaredHinge | |||
public class SquaredHinge : MeanMetricWrapper | |||
{ | |||
public SquaredHinge(string name = "squared_hinge", string dtype = null) | |||
: base(Losses.Loss.squared_hinge, name, dtype) | |||
{ | |||
} | |||
} | |||
} |
@@ -4,7 +4,11 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class Sum | |||
public class Sum : Reduce | |||
{ | |||
public Sum(string name, string dtype = null) | |||
: base(Reduction.SUM, name, dtype) | |||
{ | |||
} | |||
} | |||
} |
@@ -4,7 +4,10 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class SumOverBatchSize | |||
public class SumOverBatchSize : Reduce | |||
{ | |||
public SumOverBatchSize(string name = "sum_over_batch_size", string dtype = null) : base(Reduction.SUM_OVER_BATCH_SIZE, name, dtype) | |||
{ | |||
} | |||
} | |||
} |
@@ -1,10 +1,25 @@ | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class SumOverBatchSizeMetricWrapper | |||
public class SumOverBatchSizeMetricWrapper : SumOverBatchSize | |||
{ | |||
public SumOverBatchSizeMetricWrapper(Func<Tensor, Tensor, Tensor> fn, string name, string dtype = null) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override void update_state(Args args, KwArgs kwargs) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Hashtable get_config() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -4,7 +4,16 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class TopKCategoricalAccuracy | |||
public class TopKCategoricalAccuracy : MeanMetricWrapper | |||
{ | |||
public TopKCategoricalAccuracy(int k = 5, string name = "top_k_categorical_accuracy", string dtype = null) | |||
: base(Fn, name, dtype) | |||
{ | |||
} | |||
internal static Tensor Fn(Tensor y_true, Tensor y_pred) | |||
{ | |||
return Metric.top_k_categorical_accuracy(y_true, y_pred); | |||
} | |||
} | |||
} |
@@ -4,7 +4,11 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class TrueNegatives | |||
public class TrueNegatives : _ConfusionMatrixConditionCount | |||
{ | |||
public TrueNegatives(float thresholds = 0.5F, string name = null, string dtype = null) | |||
: base(Utils.MetricsUtils.ConfusionMatrix.TRUE_NEGATIVES, thresholds, name, dtype) | |||
{ | |||
} | |||
} | |||
} |
@@ -4,7 +4,11 @@ using System.Text; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class TruePositives | |||
public class TruePositives : _ConfusionMatrixConditionCount | |||
{ | |||
public TruePositives(float thresholds = 0.5F, string name = null, string dtype = null) | |||
: base(Utils.MetricsUtils.ConfusionMatrix.TRUE_POSITIVES, thresholds, name, dtype) | |||
{ | |||
} | |||
} | |||
} |
@@ -1,10 +1,37 @@ | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using static Tensorflow.Keras.Utils.MetricsUtils; | |||
namespace Tensorflow.Keras.Metrics | |||
{ | |||
class _ConfusionMatrixConditionCount | |||
public class _ConfusionMatrixConditionCount : Metric | |||
{ | |||
public _ConfusionMatrixConditionCount(string confusion_matrix_cond, float thresholds= 0.5f, string name= null, string dtype= null) | |||
: base(name, dtype) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Tensor result() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override void update_state(Args args, KwArgs kwargs) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override void reset_states() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Hashtable get_config() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -1,14 +1,42 @@ | |||
using System; | |||
using Keras.Layers; | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Keras.Engine; | |||
namespace Tensorflow.Keras | |||
{ | |||
class Models | |||
{ | |||
public class Model : Keras.Engine.Training.Model | |||
{ | |||
public class Model : Keras.Engine.Training.Model{} | |||
} | |||
public static Layer share_weights(Layer layer) => throw new NotImplementedException(); | |||
private static Layer _clone_layer(Layer layer) => throw new NotImplementedException(); | |||
private static Layer _insert_ancillary_layers(Model model, Layer ancillary_layers, string[] metrics_names, Node[] new_nodes) => throw new NotImplementedException(); | |||
private static Node[] _make_new_nodes(Node[] nodes_by_depth, Func<Layer, Layer> layer_fn, Hashtable layer_map, Hashtable tensor_map) => throw new NotImplementedException(); | |||
private static Model _clone_functional_model(Model model, Tensor[] input_tensors = null, Func<Layer, Layer> layer_fn = null) => throw new NotImplementedException(); | |||
private static (Hashtable, Layer[]) _clone_layers_and_model_config(Model model, Layer[] input_layers, Func<Layer, Layer> layer_fn) => throw new NotImplementedException(); | |||
private static (Layer[], Layer[]) _remove_ancillary_layers(Model model, Hashtable layer_map, Layer[] layers) => throw new NotImplementedException(); | |||
private static Sequential _clone_sequential_model(Model model, Tensor[] input_tensors = null, Func<Layer, Layer> layer_fn = null) => throw new NotImplementedException(); | |||
public static Model clone_model(Model model, Tensor[] input_tensors = null, Func<Layer, Layer> layer_fn = null) => throw new NotImplementedException(); | |||
private static void _in_place_subclassed_model_reset(Model model) => throw new NotImplementedException(); | |||
private static void _reset_build_compile_trackers(Model model) => throw new NotImplementedException(); | |||
public static void in_place_subclassed_model_state_restoration(Model model) => throw new NotImplementedException(); | |||
public static void clone_and_build_model(Model model, Tensor[] input_tensors= null, Tensor[] target_tensors= null, object custom_objects= null, | |||
bool compile_clone= true, bool in_place_reset= false, VariableV1 optimizer_iterations= null, Hashtable optimizer_config= null) | |||
=> throw new NotImplementedException(); | |||
} | |||
} |
@@ -1,10 +0,0 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras | |||
{ | |||
class Ops | |||
{ | |||
} | |||
} |
@@ -0,0 +1,25 @@ | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras | |||
{ | |||
public class Adadelta : Optimizer | |||
{ | |||
public Adadelta(float lr= 0.01f, float rho = 0.95f, float? epsilon = null, float decay = 0) : base(null) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Tensor[] get_updates(Tensor loss, variables @params) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Hashtable get_config() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -0,0 +1,25 @@ | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras | |||
{ | |||
public class Adagrad : Optimizer | |||
{ | |||
public Adagrad(float lr= 0.01f, float? epsilon = null, float decay = 0) : base(null) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Tensor[] get_updates(Tensor loss, variables @params) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Hashtable get_config() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -0,0 +1,25 @@ | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras | |||
{ | |||
public class Adam : Optimizer | |||
{ | |||
public Adam(float lr= 0.001f, float beta_1 = 0.9f, float beta_2 = 0.99f, float? epsilon = null, float decay = 0) : base(null) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Tensor[] get_updates(Tensor loss, variables @params) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Hashtable get_config() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -0,0 +1,25 @@ | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras | |||
{ | |||
public class Adamax : Optimizer | |||
{ | |||
public Adamax(float lr = 0.002f, float beta_1 = 0.9f, float beta_2 = 0.999f, float? epsilon = null, float decay = 0) : base(null) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Tensor[] get_updates(Tensor loss, variables @params) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Hashtable get_config() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -0,0 +1,25 @@ | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras | |||
{ | |||
public class Nadam : Optimizer | |||
{ | |||
public Nadam(float lr = 0.002f, float beta_1 = 0.9f, float beta_2 = 0.999f, float? epsilon = null, float schedule_decay = 0.004f) : base(null) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Tensor[] get_updates(Tensor loss, variables @params) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Hashtable get_config() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -0,0 +1,36 @@ | |||
using NumSharp; | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras | |||
{ | |||
public class Optimizer | |||
{ | |||
public Optimizer(KwArgs kwargs) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public virtual Tensor[] get_updates(Tensor loss, variables @params) | |||
{ | |||
return null; | |||
} | |||
public virtual Tensor[] get_gradients(Tensor loss, variables @params) => throw new NotImplementedException(); | |||
public virtual void set_weights(NDArray[] weights) => throw new NotImplementedException(); | |||
public virtual NDArray[] get_weights() => throw new NotImplementedException(); | |||
public virtual Hashtable get_config() => throw new NotImplementedException(); | |||
public static string serialize(Optimizer optimizer) => throw new NotImplementedException(); | |||
public static Optimizer deserialize(string config, object custom_objects = null) => throw new NotImplementedException(); | |||
public static Optimizer get(object identifier) => throw new NotImplementedException(); | |||
} | |||
} |
@@ -0,0 +1,25 @@ | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras | |||
{ | |||
public class RMSprop : Optimizer | |||
{ | |||
public RMSprop(float lr= 0.01f, float rho = 0f, float? epsilon = null, float decay = 0) : base(null) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Tensor[] get_updates(Tensor loss, variables @params) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Hashtable get_config() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -0,0 +1,25 @@ | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras | |||
{ | |||
public class SGD : Optimizer | |||
{ | |||
public SGD(float lr= 0.01f, float momentum= 0, float decay= 0, bool nesterov= false) : base(null) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Tensor[] get_updates(Tensor loss, variables @params) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Hashtable get_config() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -4,7 +4,7 @@ using System.Text; | |||
namespace Tensorflow.Keras.OptimizersV2 | |||
{ | |||
class BaseOptimizerV2 | |||
class OptimizerV2 | |||
{ | |||
} | |||
} |
@@ -1,10 +1,25 @@ | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras.Regularizers | |||
{ | |||
class L1L2 | |||
public class L1L2 : Regularizer | |||
{ | |||
public L1L2(float l1 = 0f, float l2 = 0f) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override float call(Tensor x) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public override Hashtable get_config() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -1,10 +1,40 @@ | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras.Regularizers | |||
{ | |||
public class Regularizer | |||
public abstract class Regularizer | |||
{ | |||
public virtual float call(Tensor x) | |||
{ | |||
return 0f; | |||
} | |||
public static Regularizer from_config(Hashtable hashtable) => throw new NotImplementedException(); | |||
public virtual Hashtable get_config() => throw new NotImplementedException(); | |||
public static Regularizer l1(float l = 0.01f) | |||
{ | |||
return new L1L2(l1: l); | |||
} | |||
public static Regularizer l2(float l = 0.01f) | |||
{ | |||
return new L1L2(l2: l); | |||
} | |||
public static Regularizer l1_l2(float l1 = 0.01f, float l2 = 0.01f) | |||
{ | |||
return new L1L2(l1, l2); | |||
} | |||
public static string serialize(Regularizer regularizer) => throw new NotImplementedException(); | |||
public static string deserialize(string config, dynamic custom_objects = null) => throw new NotImplementedException(); | |||
public static Regularizer get(object identifier) => throw new NotImplementedException(); | |||
} | |||
} |
@@ -1,10 +1,60 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Reflection; | |||
using System.Text; | |||
namespace Tensorflow.Keras.Utils | |||
{ | |||
class MetricsUtils | |||
public class MetricsUtils | |||
{ | |||
public static class Reduction | |||
{ | |||
public const string SUM = "sum"; | |||
public const string SUM_OVER_BATCH_SIZE = "sum_over_batch_size"; | |||
public const string WEIGHTED_MEAN = "weighted_mean"; | |||
} | |||
public static class ConfusionMatrix | |||
{ | |||
public const string TRUE_POSITIVES = "tp"; | |||
public const string FALSE_POSITIVES = "fp"; | |||
public const string TRUE_NEGATIVES = "tn"; | |||
public const string FALSE_NEGATIVES = "fn"; | |||
} | |||
public static class AUCCurve | |||
{ | |||
public const string ROC = "ROC"; | |||
public const string PR = "PR"; | |||
public static string from_str(string key) => throw new NotImplementedException(); | |||
} | |||
public static class AUCSummationMethod | |||
{ | |||
public const string INTERPOLATION = "interpolation"; | |||
public const string MAJORING = "majoring"; | |||
public const string MINORING = "minoring"; | |||
public static string from_str(string key) => throw new NotImplementedException(); | |||
} | |||
public static dynamic update_state_wrapper(Func<Args, KwArgs, Func<bool>> update_state_fn) => throw new NotImplementedException(); | |||
public static dynamic result_wrapper(Func<Args, Tensor> result_fn) => throw new NotImplementedException(); | |||
public static WeakReference weakmethod(MethodInfo method) => throw new NotImplementedException(); | |||
public static void assert_thresholds_range(float[] thresholds) => throw new NotImplementedException(); | |||
public static void parse_init_thresholds(float[] thresholds, float default_threshold = 0.5f) => throw new NotImplementedException(); | |||
public static Operation update_confusion_matrix_variables(variables variables_to_update, Tensor y_true, Tensor y_pred, float[] thresholds, | |||
int? top_k= null,int? class_id= null, Tensor sample_weight= null, bool multi_label= false, | |||
Tensor label_weights= null) => throw new NotImplementedException(); | |||
private static Tensor _filter_top_k(Tensor x, int k) => throw new NotImplementedException(); | |||
private static (Tensor[], Tensor) ragged_assert_compatible_and_get_flat_values(Tensor[] values, Tensor mask = null) => throw new NotImplementedException(); | |||
} | |||
} |
@@ -0,0 +1,14 @@ | |||
using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
using System.Collections.Generic; | |||
namespace Tensorflow.Keras.UnitTest | |||
{ | |||
[TestClass] | |||
public class OptimizerTest | |||
{ | |||
[TestMethod] | |||
public void BaseConstruct() | |||
{ | |||
} | |||
} | |||
} |
@@ -0,0 +1,20 @@ | |||
<Project Sdk="Microsoft.NET.Sdk"> | |||
<PropertyGroup> | |||
<TargetFramework>netcoreapp3.1</TargetFramework> | |||
<IsPackable>false</IsPackable> | |||
</PropertyGroup> | |||
<ItemGroup> | |||
<PackageReference Include="Microsoft.NET.Test.Sdk" Version="16.2.0" /> | |||
<PackageReference Include="MSTest.TestAdapter" Version="2.0.0" /> | |||
<PackageReference Include="MSTest.TestFramework" Version="2.0.0" /> | |||
<PackageReference Include="coverlet.collector" Version="1.0.1" /> | |||
</ItemGroup> | |||
<ItemGroup> | |||
<ProjectReference Include="..\..\src\TensorFlowNET.Keras\Tensorflow.Keras.csproj" /> | |||
</ItemGroup> | |||
</Project> |