@@ -14,6 +14,7 @@ | |||
limitations under the License. | |||
******************************************************************************/ | |||
using Tensorflow.NumPy; | |||
using Tensorflow.Operations; | |||
namespace Tensorflow | |||
@@ -42,7 +43,6 @@ namespace Tensorflow | |||
public Tensor multiply(Tensor x, Tensor y, string name = null) | |||
=> math_ops.multiply(x, y, name: name); | |||
public Tensor divide_no_nan(Tensor a, Tensor b, string name = null) | |||
=> math_ops.div_no_nan(a, b); | |||
@@ -452,7 +452,18 @@ namespace Tensorflow | |||
/// <returns></returns> | |||
public Tensor multiply<Tx, Ty>(Tx x, Ty y, string name = null) | |||
=> gen_math_ops.mul(ops.convert_to_tensor(x), ops.convert_to_tensor(y), name: name); | |||
/// <summary> | |||
/// return scalar product | |||
/// </summary> | |||
/// <typeparam name="Tx"></typeparam> | |||
/// <typeparam name="Ty"></typeparam> | |||
/// <param name="x"></param> | |||
/// <param name="y"></param> | |||
/// <param name="axes"></param> | |||
/// <param name="name"></param> | |||
/// <returns></returns> | |||
public Tensor dot_prod<Tx, Ty>(Tx x, Ty y, NDArray axes, string name = null) | |||
=> math_ops.tensordot(convert_to_tensor(x), convert_to_tensor(y), axes, name: name); | |||
public Tensor negative(Tensor x, string name = null) | |||
=> gen_math_ops.neg(x, name); | |||
@@ -486,7 +486,28 @@ namespace Tensorflow | |||
throw new NotImplementedException(""); | |||
} | |||
} | |||
public static NDArray GetFlattenArray(NDArray x) | |||
{ | |||
switch (x.GetDataType()) | |||
{ | |||
case TF_DataType.TF_FLOAT: | |||
x = x.ToArray<float>(); | |||
break; | |||
case TF_DataType.TF_DOUBLE: | |||
x = x.ToArray<double>(); | |||
break; | |||
case TF_DataType.TF_INT16: | |||
case TF_DataType.TF_INT32: | |||
x = x.ToArray<int>(); | |||
break; | |||
case TF_DataType.TF_INT64: | |||
x = x.ToArray<long>(); | |||
break; | |||
default: | |||
break; | |||
} | |||
return x; | |||
} | |||
public static TF_DataType GetDataType(this object data) | |||
{ | |||
var type = data.GetType(); | |||
@@ -49,9 +49,30 @@ namespace Tensorflow.NumPy | |||
[AutoNumPy] | |||
public static NDArray prod<T>(params T[] array) where T : unmanaged | |||
=> new NDArray(tf.reduce_prod(new NDArray(array))); | |||
[AutoNumPy] | |||
public static NDArray dot(NDArray x1, NDArray x2, NDArray? axes = null, string? name = null) | |||
{ | |||
//if axes mentioned | |||
if (axes != null) | |||
{ | |||
return new NDArray(tf.dot_prod(x1, x2, axes, name)); | |||
} | |||
if (x1.shape.ndim > 1) | |||
{ | |||
x1 = GetFlattenArray(x1); | |||
} | |||
if (x2.shape.ndim > 1) | |||
{ | |||
x2 = GetFlattenArray(x2); | |||
} | |||
//if axes not mentioned, default 0,0 | |||
return new NDArray(tf.dot_prod(x1, x2, axes: new int[] { 0, 0 }, name)); | |||
} | |||
[AutoNumPy] | |||
public static NDArray power(NDArray x, NDArray y) => new NDArray(tf.pow(x, y)); | |||
[AutoNumPy] | |||
public static NDArray square(NDArray x) => new NDArray(tf.square(x)); | |||
[AutoNumPy] | |||
public static NDArray sin(NDArray x) => new NDArray(math_ops.sin(x)); | |||
@@ -65,7 +65,34 @@ namespace TensorFlowNET.UnitTest.NumPy | |||
var y = np.power(x, 3); | |||
Assert.AreEqual(y, new[] { 0, 1, 8, 27, 64, 125 }); | |||
} | |||
[TestMethod] | |||
[TestMethod] | |||
public void square() | |||
{ | |||
var x = np.arange(6); | |||
var y = np.square(x); | |||
Assert.AreEqual(y, new[] { 0, 1, 4, 9, 16, 25 }); | |||
} | |||
[TestMethod] | |||
public void dotproduct() | |||
{ | |||
var x1 = new NDArray(new[] { 1, 2, 3 }); | |||
var x2 = new NDArray(new[] { 4, 5, 6 }); | |||
double result1 = np.dot(x1, x2); | |||
NDArray y1 = new float[,] { | |||
{ 1.0f, 2.0f, 3.0f }, | |||
{ 4.0f, 5.1f,6.0f }, | |||
{ 4.0f, 5.1f,6.0f } | |||
}; | |||
NDArray y2 = new float[,] { | |||
{ 3.0f, 2.0f, 1.0f }, | |||
{ 6.0f, 5.1f, 4.0f }, | |||
{ 6.0f, 5.1f, 4.0f } | |||
}; | |||
double result2 = np.dot(y1, y2); | |||
Assert.AreEqual(result1, 32); | |||
Assert.AreEqual(Math.Round(result2, 2), 158.02); | |||
} | |||
[TestMethod] | |||
public void maximum() | |||
{ | |||
var x1 = new NDArray(new[,] { { 1, 2, 3 }, { 4, 5.1, 6 } }); | |||