|
|
@@ -0,0 +1,60 @@ |
|
|
|
using System; |
|
|
|
using System.Collections.Generic; |
|
|
|
using System.Text; |
|
|
|
|
|
|
|
namespace Tensorflow.Keras.Applications |
|
|
|
{ |
|
|
|
public class BlockArg |
|
|
|
{ |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
public class Efficientnet |
|
|
|
{ |
|
|
|
public static Model EfficientNet(float width_coefficient, float depth_coefficient, int default_size, float dropout_rate = 0.2f, |
|
|
|
float drop_connect_rate = 0.2f, int depth_divisor = 8, string activation = "swish", |
|
|
|
BlockArg[] blocks_args = null, string model_name = "efficientnet", bool include_top = true, |
|
|
|
string weights = "imagenet", Tensor input_tensor = null, TensorShape input_shape = null, |
|
|
|
string pooling = null, int classes = 1000) => throw new NotImplementedException(); |
|
|
|
|
|
|
|
public static Tensor block(Tensor inputs, string activation= "swish", float drop_rate= 0f,string name= "", |
|
|
|
int filters_in= 32, int filters_out= 16, int kernel_size= 3, int strides= 1, |
|
|
|
int expand_ratio= 1, float se_ratio= 0, bool id_skip= true) => throw new NotImplementedException(); |
|
|
|
|
|
|
|
public static Model EfficientNetB0(bool include_top = true, string weights = "imagenet", |
|
|
|
Tensor input_tensor = null, TensorShape input_shape = null, |
|
|
|
string pooling = null, int classes = 1000) => throw new NotImplementedException(); |
|
|
|
|
|
|
|
public static Model EfficientNetB1(bool include_top = true, string weights = "imagenet", |
|
|
|
Tensor input_tensor = null, TensorShape input_shape = null, |
|
|
|
string pooling = null, int classes = 1000) => throw new NotImplementedException(); |
|
|
|
|
|
|
|
public static Model EfficientNetB2(bool include_top = true, string weights = "imagenet", |
|
|
|
Tensor input_tensor = null, TensorShape input_shape = null, |
|
|
|
string pooling = null, int classes = 1000) => throw new NotImplementedException(); |
|
|
|
|
|
|
|
public static Model EfficientNetB3(bool include_top = true, string weights = "imagenet", |
|
|
|
Tensor input_tensor = null, TensorShape input_shape = null, |
|
|
|
string pooling = null, int classes = 1000) => throw new NotImplementedException(); |
|
|
|
|
|
|
|
public static Model EfficientNetB4(bool include_top = true, string weights = "imagenet", |
|
|
|
Tensor input_tensor = null, TensorShape input_shape = null, |
|
|
|
string pooling = null, int classes = 1000) => throw new NotImplementedException(); |
|
|
|
|
|
|
|
public static Model EfficientNetB5(bool include_top = true, string weights = "imagenet", |
|
|
|
Tensor input_tensor = null, TensorShape input_shape = null, |
|
|
|
string pooling = null, int classes = 1000) => throw new NotImplementedException(); |
|
|
|
|
|
|
|
public static Model EfficientNetB6(bool include_top = true, string weights = "imagenet", |
|
|
|
Tensor input_tensor = null, TensorShape input_shape = null, |
|
|
|
string pooling = null, int classes = 1000) => throw new NotImplementedException(); |
|
|
|
|
|
|
|
public static Model EfficientNetB7(bool include_top = true, string weights = "imagenet", |
|
|
|
Tensor input_tensor = null, TensorShape input_shape = null, |
|
|
|
string pooling = null, int classes = 1000) => throw new NotImplementedException(); |
|
|
|
|
|
|
|
public static Tensor preprocess_input(Tensor x, string data_format = null) => throw new NotImplementedException(); |
|
|
|
|
|
|
|
public static Tensor decode_predictions(Tensor preds, int top = 5) => throw new NotImplementedException(); |
|
|
|
} |
|
|
|
} |