|
|
@@ -21,7 +21,7 @@ namespace TensorFlowNET.Keras.UnitTest |
|
|
|
{ |
|
|
|
var mse = keras.losses.MeanSquaredError(); |
|
|
|
var call = mse.Call(y_true, y_pred); |
|
|
|
Assert.AreEqual((NDArray)0.5, call.numpy()) ; |
|
|
|
Assert.AreEqual(call.numpy(), 0.5); |
|
|
|
} |
|
|
|
|
|
|
|
[TestMethod] |
|
|
@@ -33,7 +33,7 @@ namespace TensorFlowNET.Keras.UnitTest |
|
|
|
|
|
|
|
var mse = keras.losses.MeanSquaredError(); |
|
|
|
var call = mse.Call(y_true_float, y_pred_float); |
|
|
|
Assert.AreEqual((NDArray)0.5, call.numpy()); |
|
|
|
Assert.AreEqual(call.numpy(), 0.5f); |
|
|
|
} |
|
|
|
|
|
|
|
[TestMethod] |
|
|
@@ -42,7 +42,7 @@ namespace TensorFlowNET.Keras.UnitTest |
|
|
|
{ |
|
|
|
var mse = keras.losses.MeanSquaredError(); |
|
|
|
var call = mse.Call(y_true, y_pred, sample_weight: (NDArray)new double[] { 0.7, 0.3 }); |
|
|
|
Assert.AreEqual((NDArray)0.25, call.numpy()); |
|
|
|
Assert.AreEqual(call.numpy(), 0.25); |
|
|
|
} |
|
|
|
|
|
|
|
[TestMethod] |
|
|
@@ -50,7 +50,7 @@ namespace TensorFlowNET.Keras.UnitTest |
|
|
|
{ |
|
|
|
var mse = keras.losses.MeanSquaredError(reduction: Reduction.SUM); |
|
|
|
var call = mse.Call(y_true, y_pred); |
|
|
|
Assert.AreEqual((NDArray)1.0, call.numpy()); |
|
|
|
Assert.AreEqual(call.numpy(), 1.0); |
|
|
|
} |
|
|
|
|
|
|
|
[TestMethod] |
|
|
@@ -59,7 +59,7 @@ namespace TensorFlowNET.Keras.UnitTest |
|
|
|
{ |
|
|
|
var mse = keras.losses.MeanSquaredError(reduction: Reduction.NONE); |
|
|
|
var call = mse.Call(y_true, y_pred); |
|
|
|
Assert.AreEqual((NDArray)new double[] { 0.5, 0.5 }, call.numpy()); |
|
|
|
Assert.AreEqual(call.numpy(), new double[] { 0.5, 0.5 }); |
|
|
|
} |
|
|
|
} |
|
|
|
} |