@@ -2,6 +2,9 @@ | |||
{ | |||
public class SimpleRNNArgs : RNNArgs | |||
{ | |||
public float Dropout = 0f; | |||
public float RecurrentDropout = 0f; | |||
public int state_size; | |||
public int output_size; | |||
} | |||
} |
@@ -27,5 +27,11 @@ namespace Tensorflow.Keras | |||
TF_DataType DType { get; } | |||
int count_params(); | |||
void adapt(Tensor data, int? batch_size = null, int? steps = null); | |||
Tensors Call(Tensors inputs, Tensor? mask = null, bool? training = null, Tensors? initial_state = null, Tensors? constants = null); | |||
StateSizeWrapper state_size { get; } | |||
int output_size { get; } | |||
} | |||
} |
@@ -200,6 +200,14 @@ namespace Tensorflow.Keras.Layers | |||
bool return_sequences = false, | |||
bool return_state = false); | |||
public ILayer SimpleRNNCell( | |||
int units, | |||
string activation = "tanh", | |||
bool use_bias = true, | |||
string kernel_initializer = "glorot_uniform", | |||
string recurrent_initializer = "orthogonal", | |||
string bias_initializer = "zeros"); | |||
public ILayer Subtract(); | |||
} | |||
} |
@@ -89,6 +89,8 @@ namespace Tensorflow | |||
protected bool built = false; | |||
public bool Built => built; | |||
StateSizeWrapper ILayer.state_size => throw new NotImplementedException(); | |||
public RnnCell(bool trainable = true, | |||
string name = null, | |||
TF_DataType dtype = TF_DataType.DtInvalid, | |||
@@ -174,5 +176,10 @@ namespace Tensorflow | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -19,6 +19,7 @@ using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Linq; | |||
using System.Runtime.CompilerServices; | |||
namespace Tensorflow.Util | |||
{ | |||
@@ -213,6 +214,17 @@ namespace Tensorflow.Util | |||
public static bool is_nested(object obj) | |||
{ | |||
// Refer to https://www.tensorflow.org/api_docs/python/tf/nest | |||
//if (obj is IList || obj is IDictionary || obj is ITuple) | |||
// return true; | |||
if (obj is IList || obj is IDictionary) | |||
return true; | |||
if (obj is NDArray || obj is Tensor || obj is string || obj.GetType().IsGenericType | |||
|| obj is ISet<int> || obj is ISet<float> || obj is ISet<double>) | |||
return false; | |||
if (obj.GetType().IsNested) return true; | |||
// Check if the object is an IEnumerable | |||
if (obj is IEnumerable) | |||
{ | |||
@@ -244,7 +256,13 @@ namespace Tensorflow.Util | |||
_flatten_recursive(structure, list); | |||
return list; | |||
} | |||
// TODO(Wanglongzhi2001), ITuple must used in .NET standard 2.1, but now is 2.0 | |||
// If you want to flatten a nested tuple, please specify the type of the tuple | |||
//public static List<T> flatten<T>(ITuple structure) | |||
//{ | |||
// var list = FlattenTuple<T>(structure).ToList(); | |||
// return list; | |||
//} | |||
public static List<T> flatten<T>(IEnumerable<T> structure) | |||
{ | |||
var list = new List<T>(); | |||
@@ -272,9 +290,13 @@ namespace Tensorflow.Util | |||
case String str: | |||
list.Add(obj); | |||
break; | |||
case NDArray nd: | |||
// This case can hold both Tensor and NDArray | |||
case Tensor tensor: | |||
list.Add(obj); | |||
break; | |||
//case NDArray nd: | |||
// list.Add(obj); | |||
// break; | |||
case IEnumerable structure: | |||
foreach (var child in structure) | |||
_flatten_recursive((T)child, list); | |||
@@ -285,28 +307,26 @@ namespace Tensorflow.Util | |||
} | |||
} | |||
public static List<T> FlattenTupple<T>(object tuple) | |||
private static IEnumerable<T> FlattenTuple<T>(object tuple) | |||
{ | |||
List<T> items = new List<T>(); | |||
var type = tuple.GetType(); | |||
if (type.GetInterface("ITuple") == null) | |||
throw new ArgumentException("This is not a tuple!"); | |||
//if (tuple is ITuple t) | |||
//{ | |||
// for (int i = 0; i < t.Length; i++) | |||
// { | |||
// foreach (var item in FlattenTuple<T>(t[i])) | |||
// { | |||
// yield return item; | |||
// } | |||
// } | |||
//} | |||
if(false) | |||
{ | |||
foreach (var property in type.GetProperties()) | |||
} | |||
else | |||
{ | |||
var value = property.GetValue(tuple); | |||
if (property.PropertyType.GetInterface("ITuple") != null) | |||
{ | |||
var subItems = FlattenTupple<T>(value); | |||
items.AddRange(subItems); | |||
} | |||
else | |||
{ | |||
items.Add((T)value); | |||
} | |||
yield return (T)tuple; | |||
} | |||
return items; | |||
} | |||
//# See the swig file (util.i) for documentation. | |||
//_same_namedtuples = _pywrap_tensorflow.SameNamedtuples | |||
@@ -494,8 +514,12 @@ namespace Tensorflow.Util | |||
throw new ArgumentException("flat_sequence must not be null"); | |||
// if not is_sequence(flat_sequence): | |||
// raise TypeError("flat_sequence must be a sequence") | |||
if (!is_sequence(structure)) | |||
if (!is_nested(flat_sequence)) | |||
{ | |||
throw new ArrayTypeMismatchException($"Attempted to pack value:\\n {flat_sequence}\\ninto a structure, " + | |||
$"but found incompatible type `{flat_sequence.GetType()}` instead."); | |||
} | |||
if (!is_nested(structure)) | |||
{ | |||
if (len(flat) != 1) | |||
throw new ValueError($"Structure is a scalar but len(flat_sequence) == {len(flat)} > 1"); | |||
@@ -614,331 +614,331 @@ namespace Tensorflow.Keras | |||
return nest.pack_sequence_as(inputs, inp); | |||
} | |||
if (mask != null) | |||
{ | |||
var mask_list = tf.unstack(mask); | |||
if (go_backwards) | |||
{ | |||
mask_list.Reverse(); | |||
} | |||
for (int i = 0; i < time_steps; i++) | |||
{ | |||
// TODO(Wanglongzhi2001),deal with _get_input_tensor | |||
var inp = _get_input_tensor(i); | |||
var mask_t = mask_list[i]; | |||
// TODO | |||
var (output, newStates) = step_function((Tensors)inp, new Tensors { states, constants }); | |||
var tiled_mask_t = _expand_mask(mask_t, output); | |||
Tensors prev_output; | |||
if (successive_outputs == null) | |||
{ | |||
prev_output = tf.zeros_like(output); | |||
} | |||
else | |||
{ | |||
prev_output = successive_outputs[successive_outputs.Length - 1]; | |||
} | |||
output = tf.where(tiled_mask_t, output, prev_output); | |||
//var flat_states = nest.flatten(states); | |||
//var flat_new_states = nest.flatten(newStates); | |||
var flat_states = states.ToList(); | |||
var flat_new_states = newStates.ToList(); | |||
var tiledMaskT = flat_states | |||
.Select(s => _expand_mask(mask_t, s)) | |||
.ToArray(); | |||
var tuple = Tuple.Create(tiledMaskT); | |||
List<Tensor> flat_final_states = new List<Tensor>(); | |||
foreach (var (m, s, ps) in Enumerable.Zip(tiled_mask_t, flat_new_states, flat_states)) | |||
{ | |||
flat_final_states.Add(tf.where(m, s, ps)); | |||
} | |||
states = (Tensors)nest.pack_sequence_as(states, flat_final_states); | |||
if (return_all_outputs) | |||
{ | |||
successive_outputs.Add(output); | |||
successive_states.Add(states); | |||
} | |||
else | |||
{ | |||
successive_outputs = new Tensors { output }; | |||
successive_states = new Tensors { states }; | |||
} | |||
} | |||
last_output = successive_outputs[successive_outputs.Length - 1]; | |||
new_states = successive_states[successive_states.Length - 1]; | |||
outputs = tf.stack(successive_outputs); | |||
if (zero_output_for_mask) | |||
{ | |||
last_output = tf.where(_expand_mask(mask_list[mask_list.Length - 1], last_output), last_output, tf.zeros_like(last_output)); | |||
outputs = tf.where(_expand_mask(mask, outputs, fixed_dim: 2), outputs, tf.zeros_like(outputs)); | |||
} | |||
else // mask is null | |||
{ | |||
for (int i = 0; i < time_steps; i++) | |||
{ | |||
var inp = _get_input_tensor(i); | |||
var (output, newStates) = step_function((Tensors)inp, new Tensors { states, constants }); | |||
states = newStates; | |||
if (return_all_outputs) | |||
{ | |||
successive_outputs.Add(output); | |||
successive_states.Add(newStates); | |||
} | |||
else | |||
{ | |||
successive_outputs = new Tensors { output }; | |||
successive_states = new Tensors { newStates }; | |||
} | |||
} | |||
last_output = successive_outputs[successive_outputs.Length - 1]; | |||
new_states = successive_states[successive_states.Length - 1]; | |||
outputs = tf.stack(successive_outputs); | |||
} | |||
} | |||
} | |||
else // unroll == false | |||
{ | |||
var states = initial_states; | |||
// Create input tensor array, if the inputs is nested tensors, then it | |||
// will be flattened first, and tensor array will be created one per | |||
// flattened tensor. | |||
var input_ta = new List<TensorArray>(); | |||
for (int i = 0; i < flatted_inptus.Count; i++) | |||
{ | |||
input_ta.Add(tf.TensorArray(dtype: flatted_inptus[i].dtype, size: time_step_t)); | |||
} | |||
// Get the time(0) input and compute the output for that, the output will | |||
// be used to determine the dtype of output tensor array. Don't read from | |||
// input_ta due to TensorArray clear_after_read default to True. | |||
var inps = new Tensors(); | |||
foreach (var inp in flatted_inptus) | |||
{ | |||
inps.Add(inp[0]); | |||
} | |||
var input_time_zero = nest.pack_sequence_as(inputs, inps); | |||
// output_time_zero is used to determine the cell output shape and its | |||
// dtype. the value is discarded. | |||
(output_time_zero, _) = step_function((Tensor)input_time_zero, new Tensors { initial_states, constants }); | |||
var output_ta_size = return_all_outputs ? time_step_t : tf.constant(1); | |||
var output_ta = new List<TensorArray>(); | |||
for (int i = 0; i < output_time_zero.ToList().Count; i++) | |||
{ | |||
var Out = output_time_zero.ToList()[i]; | |||
output_ta.Add(tf.TensorArray(dtype: Out.dtype, size: output_ta_size, element_shape: Out.shape)); | |||
} | |||
var time = tf.constant(0, dtype: TF_DataType.TF_INT32, name: "time"); | |||
Func<Tensor, Tensor>? masking_fn; | |||
Func<Tensors, Tensors, Tensors, Tensors>? compute_masked_output = null; | |||
if (mask != null) | |||
{ | |||
if (go_backwards) | |||
{ | |||
mask = tf.reverse(mask, axis: new[] { 0 }); | |||
} | |||
var mask_ta = tf.TensorArray(dtype: TF_DataType.TF_BOOL, size: time_step_t); | |||
mask_ta = mask_ta.unstack(mask); | |||
masking_fn = (time) => | |||
{ | |||
return mask_ta.read(time); | |||
}; | |||
compute_masked_output = (mask_t, flat_out, flat_mask) => | |||
{ | |||
var tiled_mask_t = new Tensors(); | |||
foreach (var o in flat_out) | |||
{ | |||
tiled_mask_t.Add(_expand_mask(mask_t, o, fixed_dim: mask_t.rank)); | |||
} | |||
Tensors res = new Tensors(); | |||
foreach (var (m, o, fm) in Enumerable.Zip(tiled_mask_t, flat_out, flat_mask)) | |||
{ | |||
res.Add(tf.where(m, o, fm)); | |||
} | |||
return res; | |||
}; | |||
} | |||
// TODO(Wanglongzhi2001), what the input_length's type should be(an integer or a single tensor)? | |||
else if (input_length is Tensor) | |||
{ | |||
if (go_backwards) | |||
{ | |||
var max_len = tf.reduce_max(input_length, axis: 0); | |||
var rev_input_length = tf.subtract(max_len - 1, input_length); | |||
masking_fn = (time) => | |||
{ | |||
return tf.less(rev_input_length, time); | |||
}; | |||
} | |||
else | |||
{ | |||
masking_fn = (time) => | |||
{ | |||
return tf.greater(input_length, time); | |||
}; | |||
} | |||
compute_masked_output = (mask_t, flat_out, flat_mask) => | |||
{ | |||
var res = new List<Tensor>(); | |||
foreach (var (o, zo) in zip(flat_out, flat_mask)) | |||
{ | |||
res.Add(tf.where(mask_t, o, zo)); | |||
} | |||
return res; | |||
}; | |||
} | |||
else | |||
{ | |||
masking_fn = null; | |||
} | |||
if (masking_fn != null) | |||
{ | |||
// Mask for the T output will be base on the output of T - 1. In the | |||
// case T = 0, a zero filled tensor will be used. | |||
var flat_zero_output = new Tensors(); | |||
foreach (var o in nest.flatten(output_time_zero)) | |||
{ | |||
flat_zero_output.Add(tf.zeros_like(o)); | |||
} | |||
(Tensor, List<TensorArray>, Tensors, Tensors) _step(Tensor time, List<TensorArray> output_ta_t, Tensors prev_output, Tensors states) | |||
{ | |||
/* | |||
RNN step function. | |||
Args: | |||
time: Current timestep value. | |||
output_ta_t: TensorArray. | |||
prev_output: tuple of outputs from time - 1. | |||
*states: List of states. | |||
Returns: | |||
Tuple(todo): `(time + 1, output_ta_t, output) + tuple(new_states)` | |||
*/ | |||
var current_input = input_ta.Select(x => x.read(time)).ToList(); | |||
// maybe set shape | |||
// TODO(Wanglongzhi2001),deal with nest.pack_sequence_as's return type | |||
current_input = (List<Tensor>)nest.pack_sequence_as(inputs, current_input); | |||
var mask_t = masking_fn(time); | |||
var (output, new_states) = step_function(current_input, new Tensors { states, constants }); | |||
// mask output | |||
//var flat_output = nest.flatten(output); | |||
var flat_output = output.ToList(); | |||
var flat_mask_output = zero_output_for_mask ? flat_zero_output : prev_output.ToList(); | |||
// TODO(Wanglongzhi2001),deal with compute_masked_output's third parameter's type | |||
var flat_new_output = compute_masked_output(mask_t, flat_output, flat_mask_output); | |||
// mask states | |||
var flat_state = states.ToList(); | |||
var flat_new_state = new_states.ToList(); | |||
foreach (var (state, new_state) in zip(flat_state, flat_new_state)) | |||
{ | |||
if (new_state is Tensor) | |||
{ | |||
new_state.set_shape(state.shape); | |||
} | |||
} | |||
var flat_final_state = compute_masked_output(mask_t, flat_new_state, flat_state); | |||
new_states = (Tensors)nest.pack_sequence_as(new_states, flat_final_state); | |||
var ta_index_to_write = return_all_outputs ? time : tf.constant(0); | |||
var Output_ta_t = new List<TensorArray>(); | |||
// TODO(Wanglongzhi2001),deal with zip output_ta_t | |||
foreach (var (ta, Out) in zip(output_ta_t, flat_new_output)) | |||
{ | |||
Output_ta_t.Add(ta.write(ta_index_to_write, Out)); | |||
} | |||
//new_states = (Tensors)nest.pack_sequence_as(initial_states, flat_new_state); | |||
return (time + 1, Output_ta_t, flat_new_output, new_states); | |||
} | |||
Func<Tensor, Tensor> cond = (time) => (time < time_step_t); | |||
var final_outputs = tf.while_loop(cond: cond, body: _step, loop_vars: (time, output_ta, flat_zero_output, states)); | |||
new_states = final_outputs.Item4; | |||
output_ta = final_outputs.Item2; | |||
} | |||
else | |||
{ | |||
(Tensor, List<TensorArray>, Tensors) _step(Tensor time, List<TensorArray> output_ta_t, Tensors states) | |||
{ | |||
var current_input = input_ta.Select(x => x.read(time)).ToList(); | |||
// maybe set shape | |||
// TODO(Wanglongzhi2001),deal with nest.pack_sequence_as's return type | |||
current_input = (List<Tensor>)nest.pack_sequence_as(inputs, current_input); | |||
var (output, new_states) = step_function(current_input, new Tensors { states, constants }); | |||
var flat_state = states.ToList(); | |||
var flat_new_state = new_states.ToList(); | |||
foreach (var (state, new_state) in zip(flat_state, flat_new_state)) | |||
{ | |||
if (new_state is Tensor) | |||
{ | |||
new_state.set_shape(state.shape); | |||
} | |||
} | |||
var flat_output = output.ToList(); | |||
var ta_index_to_write = return_all_outputs ? time : tf.constant(0); | |||
var Output_ta_t = new List<TensorArray>(); | |||
foreach (var (ta, out_) in zip(output_ta_t, flat_output)) | |||
{ | |||
Output_ta_t.Add(ta.write(ta_index_to_write, out_)); | |||
} | |||
new_states = (Tensors)nest.pack_sequence_as(initial_states, flat_new_state); | |||
return (time + 1, Output_ta_t, new_states); | |||
} | |||
Func<Tensor, Tensor> cond = (time) => (time < time_step_t); | |||
var final_outputs = tf.while_loop(cond: cond, body: _step, loop_vars: (time, output_ta, states)); | |||
new_states = final_outputs.Item3; | |||
output_ta = final_outputs.Item2; | |||
} | |||
//Tensors outputs = new Tensors(); | |||
foreach (var o in output_ta) | |||
{ | |||
outputs.Add(o.stack()); | |||
} | |||
foreach (var o in outputs) | |||
{ | |||
last_output.Add(o[-1]); | |||
} | |||
outputs = (Tensors)nest.pack_sequence_as(output_time_zero, outputs); | |||
last_output = (Tensors)nest.pack_sequence_as(output_time_zero, last_output); | |||
//if (mask != null) | |||
//{ | |||
// var mask_list = tf.unstack(mask); | |||
// if (go_backwards) | |||
// { | |||
// mask_list.Reverse(); | |||
// } | |||
// for (int i = 0; i < time_steps; i++) | |||
// { | |||
// // TODO(Wanglongzhi2001),deal with _get_input_tensor | |||
// var inp = _get_input_tensor(i); | |||
// var mask_t = mask_list[i]; | |||
// // TODO | |||
// var (output, newStates) = step_function((Tensors)inp, new Tensors { states, constants }); | |||
// var tiled_mask_t = _expand_mask(mask_t, output); | |||
// Tensors prev_output; | |||
// if (successive_outputs == null) | |||
// { | |||
// prev_output = tf.zeros_like(output); | |||
// } | |||
// else | |||
// { | |||
// prev_output = successive_outputs[successive_outputs.Length - 1]; | |||
// } | |||
// output = tf.where(tiled_mask_t, output, prev_output); | |||
// //var flat_states = nest.flatten(states); | |||
// //var flat_new_states = nest.flatten(newStates); | |||
// var flat_states = states.ToList(); | |||
// var flat_new_states = newStates.ToList(); | |||
// var tiledMaskT = flat_states | |||
// .Select(s => _expand_mask(mask_t, s)) | |||
// .ToArray(); | |||
// var tuple = Tuple.Create(tiledMaskT); | |||
// List<Tensor> flat_final_states = new List<Tensor>(); | |||
// foreach (var (m, s, ps) in Enumerable.Zip(tiled_mask_t, flat_new_states, flat_states)) | |||
// { | |||
// flat_final_states.Add(tf.where(m, s, ps)); | |||
// } | |||
// states = (Tensors)nest.pack_sequence_as(states, flat_final_states); | |||
// if (return_all_outputs) | |||
// { | |||
// successive_outputs.Add(output); | |||
// successive_states.Add(states); | |||
// } | |||
// else | |||
// { | |||
// successive_outputs = new Tensors { output }; | |||
// successive_states = new Tensors { states }; | |||
// } | |||
// } | |||
// last_output = successive_outputs[successive_outputs.Length - 1]; | |||
// new_states = successive_states[successive_states.Length - 1]; | |||
// outputs = tf.stack(successive_outputs); | |||
// if (zero_output_for_mask) | |||
// { | |||
// last_output = tf.where(_expand_mask(mask_list[mask_list.Length - 1], last_output), last_output, tf.zeros_like(last_output)); | |||
// outputs = tf.where(_expand_mask(mask, outputs, fixed_dim: 2), outputs, tf.zeros_like(outputs)); | |||
// } | |||
// else // mask is null | |||
// { | |||
// for (int i = 0; i < time_steps; i++) | |||
// { | |||
// var inp = _get_input_tensor(i); | |||
// var (output, newStates) = step_function((Tensors)inp, new Tensors { states, constants }); | |||
// states = newStates; | |||
// if (return_all_outputs) | |||
// { | |||
// successive_outputs.Add(output); | |||
// successive_states.Add(newStates); | |||
// } | |||
// else | |||
// { | |||
// successive_outputs = new Tensors { output }; | |||
// successive_states = new Tensors { newStates }; | |||
// } | |||
// } | |||
// last_output = successive_outputs[successive_outputs.Length - 1]; | |||
// new_states = successive_states[successive_states.Length - 1]; | |||
// outputs = tf.stack(successive_outputs); | |||
// } | |||
//} | |||
} | |||
//else // unroll == false | |||
//{ | |||
// var states = initial_states; | |||
// // Create input tensor array, if the inputs is nested tensors, then it | |||
// // will be flattened first, and tensor array will be created one per | |||
// // flattened tensor. | |||
// var input_ta = new List<TensorArray>(); | |||
// for (int i = 0; i < flatted_inptus.Count; i++) | |||
// { | |||
// input_ta.Add(tf.TensorArray(dtype: flatted_inptus[i].dtype, size: time_step_t)); | |||
// } | |||
// // Get the time(0) input and compute the output for that, the output will | |||
// // be used to determine the dtype of output tensor array. Don't read from | |||
// // input_ta due to TensorArray clear_after_read default to True. | |||
// var inps = new Tensors(); | |||
// foreach (var inp in flatted_inptus) | |||
// { | |||
// inps.Add(inp[0]); | |||
// } | |||
// var input_time_zero = nest.pack_sequence_as(inputs, inps); | |||
// // output_time_zero is used to determine the cell output shape and its | |||
// // dtype. the value is discarded. | |||
// (output_time_zero, _) = step_function((Tensor)input_time_zero, new Tensors { initial_states, constants }); | |||
// var output_ta_size = return_all_outputs ? time_step_t : tf.constant(1); | |||
// var output_ta = new List<TensorArray>(); | |||
// for (int i = 0; i < output_time_zero.ToList().Count; i++) | |||
// { | |||
// var Out = output_time_zero.ToList()[i]; | |||
// output_ta.Add(tf.TensorArray(dtype: Out.dtype, size: output_ta_size, element_shape: Out.shape)); | |||
// } | |||
// var time = tf.constant(0, dtype: TF_DataType.TF_INT32, name: "time"); | |||
// Func<Tensor, Tensor>? masking_fn; | |||
// Func<Tensors, Tensors, Tensors, Tensors>? compute_masked_output = null; | |||
// if (mask != null) | |||
// { | |||
// if (go_backwards) | |||
// { | |||
// mask = tf.reverse(mask, axis: new[] { 0 }); | |||
// } | |||
// var mask_ta = tf.TensorArray(dtype: TF_DataType.TF_BOOL, size: time_step_t); | |||
// mask_ta = mask_ta.unstack(mask); | |||
// masking_fn = (time) => | |||
// { | |||
// return mask_ta.read(time); | |||
// }; | |||
// compute_masked_output = (mask_t, flat_out, flat_mask) => | |||
// { | |||
// var tiled_mask_t = new Tensors(); | |||
// foreach (var o in flat_out) | |||
// { | |||
// tiled_mask_t.Add(_expand_mask(mask_t, o, fixed_dim: mask_t.rank)); | |||
// } | |||
// Tensors res = new Tensors(); | |||
// foreach (var (m, o, fm) in Enumerable.Zip(tiled_mask_t, flat_out, flat_mask)) | |||
// { | |||
// res.Add(tf.where(m, o, fm)); | |||
// } | |||
// return res; | |||
// }; | |||
// } | |||
// // TODO(Wanglongzhi2001), what the input_length's type should be(an integer or a single tensor)? | |||
// else if (input_length is Tensor) | |||
// { | |||
// if (go_backwards) | |||
// { | |||
// var max_len = tf.reduce_max(input_length, axis: 0); | |||
// var rev_input_length = tf.subtract(max_len - 1, input_length); | |||
// masking_fn = (time) => | |||
// { | |||
// return tf.less(rev_input_length, time); | |||
// }; | |||
// } | |||
// else | |||
// { | |||
// masking_fn = (time) => | |||
// { | |||
// return tf.greater(input_length, time); | |||
// }; | |||
// } | |||
// compute_masked_output = (mask_t, flat_out, flat_mask) => | |||
// { | |||
// var res = new List<Tensor>(); | |||
// foreach (var (o, zo) in zip(flat_out, flat_mask)) | |||
// { | |||
// res.Add(tf.where(mask_t, o, zo)); | |||
// } | |||
// return res; | |||
// }; | |||
// } | |||
// else | |||
// { | |||
// masking_fn = null; | |||
// } | |||
// if (masking_fn != null) | |||
// { | |||
// // Mask for the T output will be base on the output of T - 1. In the | |||
// // case T = 0, a zero filled tensor will be used. | |||
// var flat_zero_output = new Tensors(); | |||
// foreach (var o in nest.flatten(output_time_zero)) | |||
// { | |||
// flat_zero_output.Add(tf.zeros_like(o)); | |||
// } | |||
// (Tensor, List<TensorArray>, Tensors, Tensors) _step(Tensor time, List<TensorArray> output_ta_t, Tensors prev_output, Tensors states) | |||
// { | |||
// /* | |||
// RNN step function. | |||
// Args: | |||
// time: Current timestep value. | |||
// output_ta_t: TensorArray. | |||
// prev_output: tuple of outputs from time - 1. | |||
// *states: List of states. | |||
// Returns: | |||
// Tuple(todo): `(time + 1, output_ta_t, output) + tuple(new_states)` | |||
// */ | |||
// var current_input = input_ta.Select(x => x.read(time)).ToList(); | |||
// // maybe set shape | |||
// // TODO(Wanglongzhi2001),deal with nest.pack_sequence_as's return type | |||
// current_input = (List<Tensor>)nest.pack_sequence_as(inputs, current_input); | |||
// var mask_t = masking_fn(time); | |||
// var (output, new_states) = step_function(current_input, new Tensors { states, constants }); | |||
// // mask output | |||
// //var flat_output = nest.flatten(output); | |||
// var flat_output = output.ToList(); | |||
// var flat_mask_output = zero_output_for_mask ? flat_zero_output : prev_output.ToList(); | |||
// // TODO(Wanglongzhi2001),deal with compute_masked_output's third parameter's type | |||
// var flat_new_output = compute_masked_output(mask_t, flat_output, flat_mask_output); | |||
// // mask states | |||
// var flat_state = states.ToList(); | |||
// var flat_new_state = new_states.ToList(); | |||
// foreach (var (state, new_state) in zip(flat_state, flat_new_state)) | |||
// { | |||
// if (new_state is Tensor) | |||
// { | |||
// new_state.set_shape(state.shape); | |||
// } | |||
// } | |||
// var flat_final_state = compute_masked_output(mask_t, flat_new_state, flat_state); | |||
// new_states = (Tensors)nest.pack_sequence_as(new_states, flat_final_state); | |||
// var ta_index_to_write = return_all_outputs ? time : tf.constant(0); | |||
// var Output_ta_t = new List<TensorArray>(); | |||
// // TODO(Wanglongzhi2001),deal with zip output_ta_t | |||
// foreach (var (ta, Out) in zip(output_ta_t, flat_new_output)) | |||
// { | |||
// Output_ta_t.Add(ta.write(ta_index_to_write, Out)); | |||
// } | |||
// //new_states = (Tensors)nest.pack_sequence_as(initial_states, flat_new_state); | |||
// return (time + 1, Output_ta_t, flat_new_output, new_states); | |||
// } | |||
// Func<Tensor, Tensor> cond = (time) => (time < time_step_t); | |||
// var final_outputs = tf.while_loop(cond: cond, body: _step, loop_vars: (time, output_ta, flat_zero_output, states)); | |||
// new_states = final_outputs.Item4; | |||
// output_ta = final_outputs.Item2; | |||
// } | |||
// else | |||
// { | |||
// (Tensor, List<TensorArray>, Tensors) _step(Tensor time, List<TensorArray> output_ta_t, Tensors states) | |||
// { | |||
// var current_input = input_ta.Select(x => x.read(time)).ToList(); | |||
// // maybe set shape | |||
// // TODO(Wanglongzhi2001),deal with nest.pack_sequence_as's return type | |||
// current_input = (List<Tensor>)nest.pack_sequence_as(inputs, current_input); | |||
// var (output, new_states) = step_function(current_input, new Tensors { states, constants }); | |||
// var flat_state = states.ToList(); | |||
// var flat_new_state = new_states.ToList(); | |||
// foreach (var (state, new_state) in zip(flat_state, flat_new_state)) | |||
// { | |||
// if (new_state is Tensor) | |||
// { | |||
// new_state.set_shape(state.shape); | |||
// } | |||
// } | |||
// var flat_output = output.ToList(); | |||
// var ta_index_to_write = return_all_outputs ? time : tf.constant(0); | |||
// var Output_ta_t = new List<TensorArray>(); | |||
// foreach (var (ta, out_) in zip(output_ta_t, flat_output)) | |||
// { | |||
// Output_ta_t.Add(ta.write(ta_index_to_write, out_)); | |||
// } | |||
// new_states = (Tensors)nest.pack_sequence_as(initial_states, flat_new_state); | |||
// return (time + 1, Output_ta_t, new_states); | |||
// } | |||
// Func<Tensor, Tensor> cond = (time) => (time < time_step_t); | |||
// var final_outputs = tf.while_loop(cond: cond, body: _step, loop_vars: (time, output_ta, states)); | |||
// new_states = final_outputs.Item3; | |||
// output_ta = final_outputs.Item2; | |||
// } | |||
// //Tensors outputs = new Tensors(); | |||
// foreach (var o in output_ta) | |||
// { | |||
// outputs.Add(o.stack()); | |||
// } | |||
// foreach (var o in outputs) | |||
// { | |||
// last_output.Add(o[-1]); | |||
// } | |||
// outputs = (Tensors)nest.pack_sequence_as(output_time_zero, outputs); | |||
// last_output = (Tensors)nest.pack_sequence_as(output_time_zero, last_output); | |||
//} | |||
Func<Tensor, Tensor> set_shape; | |||
set_shape = (output_) => | |||
@@ -968,5 +968,27 @@ namespace Tensorflow.Keras | |||
return (last_output, Outputs, new_states); | |||
} | |||
// Multiplies 2 tensors (and/or variables) and returns a tensor. | |||
// This operation corresponds to `numpy.dot(a, b, out=None)`. | |||
public Tensor Dot(Tensor x, Tensor y) | |||
{ | |||
//if (x.ndim != 1 && (x.ndim > 2 || y.ndim > 2)) | |||
//{ | |||
// var x_shape = new List<int>(); | |||
// foreach (var (i,s) in zip(x.shape.as_int_list(), tf.unstack(tf.shape(x)))) | |||
// { | |||
// if (i != 0) | |||
// { | |||
// x_shape.append(i); | |||
// } | |||
// else | |||
// { | |||
// x_shape.append(s); | |||
// } | |||
// } | |||
//} | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -325,7 +325,7 @@ namespace Tensorflow.Keras.Engine | |||
nodes_in_decreasing_depth.append(node); | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
{ | |||
var tensor_dict = new Dictionary<long, Queue<Tensor>>(); | |||
// map input values | |||
@@ -30,7 +30,7 @@ namespace Tensorflow.Keras.Engine | |||
if (!built) | |||
MaybeBuild(inputs); | |||
var outputs = Call(inputs, state: state, training: training); | |||
var outputs = Call(inputs, initial_state: state, training: training); | |||
// memory leak | |||
// _set_connectivity_metadata_(inputs, outputs); | |||
@@ -254,6 +254,10 @@ namespace Tensorflow.Keras.Engine | |||
/// </summary> | |||
public Func<Tensors, Tensors>? ReplacedCall { get; set; } = null; | |||
public StateSizeWrapper state_size => throw new NotImplementedException(); | |||
public int output_size => throw new NotImplementedException(); | |||
public Layer(LayerArgs args) | |||
{ | |||
Initialize(args); | |||
@@ -434,56 +438,61 @@ namespace Tensorflow.Keras.Engine | |||
public override void SetAttr(string name, object value) | |||
{ | |||
// TODO(Rinne): deal with "_self_setattr_tracking". | |||
//// TODO(Rinne): deal with "_self_setattr_tracking". | |||
value = TrackableDataStructure.sticky_attribute_assignment(this, name, value); | |||
//value = TrackableDataStructure.sticky_attribute_assignment(this, name, value); | |||
foreach(var val in nest.flatten(value)) | |||
{ | |||
if(val is Metric) | |||
{ | |||
// TODO(Rinne): deal with metrics. | |||
} | |||
} | |||
// TODO(Rinne): deal with "_auto_track_sub_layers". | |||
foreach(var val in nest.flatten(value)) | |||
{ | |||
if(val is not IVariableV1 variable) | |||
{ | |||
continue; | |||
} | |||
if (variable.Trainable) | |||
{ | |||
if (_trainable_weights.Contains(variable)) | |||
{ | |||
continue; | |||
} | |||
_trainable_weights.Add(variable); | |||
} | |||
else | |||
{ | |||
if (_non_trainable_weights.Contains(variable)) | |||
{ | |||
continue; | |||
} | |||
_non_trainable_weights.Add(variable); | |||
} | |||
keras.backend.track_variable(variable); | |||
} | |||
//foreach(var val in nest.flatten(value)) | |||
//{ | |||
// if(val is Metric) | |||
// { | |||
// // TODO(Rinne): deal with metrics. | |||
// } | |||
//} | |||
//// TODO(Rinne): deal with "_auto_track_sub_layers". | |||
//foreach(var val in nest.flatten(value)) | |||
//{ | |||
// if(val is not IVariableV1 variable) | |||
// { | |||
// continue; | |||
// } | |||
// if (variable.Trainable) | |||
// { | |||
// if (_trainable_weights.Contains(variable)) | |||
// { | |||
// continue; | |||
// } | |||
// _trainable_weights.Add(variable); | |||
// } | |||
// else | |||
// { | |||
// if (_non_trainable_weights.Contains(variable)) | |||
// { | |||
// continue; | |||
// } | |||
// _non_trainable_weights.Add(variable); | |||
// } | |||
// keras.backend.track_variable(variable); | |||
//} | |||
//// Directly use the implementation of `Trackable`. | |||
//var t = this.GetType(); | |||
//var field_info = t.GetField(name); | |||
//if (field_info is not null) | |||
//{ | |||
// field_info.SetValue(this, value); | |||
//} | |||
//else | |||
//{ | |||
// CustomizedFields[name] = value; | |||
//} | |||
} | |||
// Directly use the implementation of `Trackable`. | |||
var t = this.GetType(); | |||
var field_info = t.GetField(name); | |||
if (field_info is not null) | |||
{ | |||
field_info.SetValue(this, value); | |||
} | |||
else | |||
{ | |||
CustomizedFields[name] = value; | |||
} | |||
Tensors ILayer.Call(Tensors inputs, Tensor mask, bool? training, Tensors initial_state, Tensors constants) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -143,7 +143,7 @@ namespace Tensorflow.Keras.Engine | |||
} | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
{ | |||
if (!_has_explicit_input_shape) | |||
{ | |||
@@ -154,10 +154,10 @@ namespace Tensorflow.Keras.Engine | |||
{ | |||
if (!built) | |||
_init_graph_network(this.inputs, outputs); | |||
return base.Call(inputs, state, training); | |||
return base.Call(inputs, initial_state, training); | |||
} | |||
return base.Call(inputs, state, training); | |||
return base.Call(inputs, initial_state, training); | |||
} | |||
void _build_graph_network_for_inferred_shape(Shape input_shape, TF_DataType input_dtype) | |||
@@ -83,7 +83,7 @@ namespace Tensorflow.Keras.Layers | |||
_buildInputShape = input_shape; | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
{ | |||
var inputs_shape = array_ops.shape(inputs); | |||
var batch_size = inputs_shape[0]; | |||
@@ -709,6 +709,23 @@ namespace Tensorflow.Keras.Layers | |||
ReturnState = return_state | |||
}); | |||
public ILayer SimpleRNNCell( | |||
int units, | |||
string activation = "tanh", | |||
bool use_bias = true, | |||
string kernel_initializer = "glorot_uniform", | |||
string recurrent_initializer = "orthogonal", | |||
string bias_initializer = "zeros") | |||
=> new SimpleRNNCell(new SimpleRNNArgs | |||
{ | |||
Units = units, | |||
Activation = keras.activations.GetActivationFromName(activation), | |||
UseBias = use_bias, | |||
KernelInitializer = GetInitializerByName(kernel_initializer), | |||
RecurrentInitializer = GetInitializerByName(recurrent_initializer), | |||
} | |||
); | |||
/// <summary> | |||
/// Long Short-Term Memory layer - Hochreiter 1997. | |||
/// </summary> | |||
@@ -0,0 +1,80 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.ArgsDefinition.Rnn; | |||
using Tensorflow.Keras.Engine; | |||
namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
public class DropoutRNNCellMixin | |||
{ | |||
public float dropout; | |||
public float recurrent_dropout; | |||
// Get the dropout mask for RNN cell's input. | |||
public Tensors get_dropout_maskcell_for_cell(Tensors input, bool training, int count = 1) | |||
{ | |||
return _generate_dropout_mask( | |||
tf.ones_like(input), | |||
dropout, | |||
training, | |||
count); | |||
} | |||
// Get the recurrent dropout mask for RNN cell. | |||
public Tensors get_recurrent_dropout_maskcell_for_cell(Tensors input, bool training, int count = 1) | |||
{ | |||
return _generate_dropout_mask( | |||
tf.ones_like(input), | |||
recurrent_dropout, | |||
training, | |||
count); | |||
} | |||
public Tensors _create_dropout_mask(Tensors input, bool training, int count = 1) | |||
{ | |||
return _generate_dropout_mask( | |||
tf.ones_like(input), | |||
dropout, | |||
training, | |||
count); | |||
} | |||
public Tensors _create_recurrent_dropout_mask(Tensors input, bool training, int count = 1) | |||
{ | |||
return _generate_dropout_mask( | |||
tf.ones_like(input), | |||
recurrent_dropout, | |||
training, | |||
count); | |||
} | |||
public Tensors _generate_dropout_mask(Tensor ones, float rate, bool training, int count = 1) | |||
{ | |||
Tensors dropped_inputs() | |||
{ | |||
DropoutArgs args = new DropoutArgs(); | |||
args.Rate = rate; | |||
var DropoutLayer = new Dropout(args); | |||
var mask = DropoutLayer.Apply(ones, training: training); | |||
return mask; | |||
} | |||
if (count > 1) | |||
{ | |||
Tensors results = new Tensors(); | |||
for (int i = 0; i < count; i++) | |||
{ | |||
results.Add(dropped_inputs()); | |||
} | |||
return results; | |||
} | |||
return dropped_inputs(); | |||
} | |||
} | |||
} |
@@ -19,7 +19,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
private RNNArgs args; | |||
private object input_spec = null; // or NoneValue?? | |||
private object state_spec = null; | |||
private object _states = null; | |||
private Tensors _states = null; | |||
private object constants_spec = null; | |||
private int _num_constants = 0; | |||
protected IVariableV1 kernel; | |||
@@ -44,19 +44,15 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
cell = args.Cell.AsT1; | |||
} | |||
Type type = cell.GetType(); | |||
MethodInfo methodInfo = type.GetMethod("Call"); | |||
if (methodInfo == null) | |||
MethodInfo callMethodInfo = type.GetMethod("Call"); | |||
if (callMethodInfo == null) | |||
{ | |||
throw new ValueError(@"Argument `cell` or `cells`should have a `call` method. "); | |||
} | |||
PropertyInfo propertyInfo = type.GetProperty("state_size"); | |||
if (propertyInfo == null) | |||
PropertyInfo state_size_info = type.GetProperty("state_size"); | |||
if (state_size_info == null) | |||
{ | |||
throw new ValueError(@"The RNN cell should have a `state_size` attribute"); | |||
} | |||
@@ -80,7 +76,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
// States is a tuple consist of cell states_size, like (cell1.state_size, cell2.state_size,...) | |||
// state_size can be a single integer, can also be a list/tuple of integers, can also be TensorShape or a list/tuple of TensorShape | |||
public object States | |||
public Tensors States | |||
{ | |||
get | |||
{ | |||
@@ -106,7 +102,6 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
// state_size is a array of ints or a positive integer | |||
var state_size = cell.state_size; | |||
// TODO(wanglongzhi2001),flat_output_size应该是什么类型的,Shape还是Tensor | |||
Func<Shape, Shape> _get_output_shape; | |||
_get_output_shape = (flat_output_size) => | |||
@@ -132,8 +127,10 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
return output_shape; | |||
}; | |||
Type type = cell.GetType(); | |||
PropertyInfo output_size_info = type.GetProperty("output_size"); | |||
Shape output_shape; | |||
if (cell.output_size != 0) | |||
if (output_size_info != null) | |||
{ | |||
output_shape = nest.map_structure(_get_output_shape, cell.output_size); | |||
// TODO(wanglongzhi2001),output_shape应该简单的就是一个元组还是一个Shape类型 | |||
@@ -160,6 +157,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
return output_shape; | |||
} | |||
} | |||
private Tensors compute_mask(Tensors inputs, Tensors mask) | |||
@@ -184,8 +182,6 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
return output_mask; | |||
} | |||
} | |||
public override void build(KerasShapesWrapper input_shape) | |||
@@ -247,14 +243,18 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
{ | |||
//var (inputs_padded, row_length) = BackendImpl.convert_inputs_if_ragged(inputs); | |||
//bool is_ragged_input = row_length != null; | |||
//_validate_args_if_ragged(is_ragged_input, mask); | |||
var (inputs_processed, initial_state_processed, constants_processed) = _process_inputs(inputs, initial_state, constants); | |||
// 暂时先不接受ragged tensor | |||
int? row_length = null; | |||
bool is_ragged_input = false; | |||
_validate_args_if_ragged(is_ragged_input, mask); | |||
(inputs, initial_state, constants) = _process_inputs(inputs, initial_state, constants); | |||
_maybe_reset_cell_dropout_mask(cell); | |||
if (cell is StackedRNNCells) | |||
{ | |||
foreach (var cell in ((StackedRNNCells)cell).Cells) | |||
var stack_cell = cell as StackedRNNCells; | |||
foreach (var cell in stack_cell.Cells) | |||
{ | |||
_maybe_reset_cell_dropout_mask(cell); | |||
} | |||
@@ -263,17 +263,16 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
if (mask != null) | |||
{ | |||
// Time step masks must be the same for each input. | |||
//mask = nest.flatten(mask)[0]; | |||
mask = mask[0]; | |||
mask = nest.flatten(mask)[0]; | |||
} | |||
Shape input_shape; | |||
if (nest.is_nested(initial_state_processed)) | |||
if (nest.is_nested(inputs)) | |||
{ | |||
// In the case of nested input, use the first element for shape check | |||
// input_shape = nest.flatten(inputs)[0].shape; | |||
input_shape = inputs[0].shape; | |||
// TODO(Wanglongzhi2001) | |||
input_shape = nest.flatten(inputs)[0].shape; | |||
} | |||
else | |||
{ | |||
@@ -322,6 +321,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
// states = (states[0] if len(states) == 1 and is_tf_rnn_cell else states) | |||
states = states.Length == 1 ? states[0] : states; | |||
var (output, new_states) = cell_call_fn(inputs, null, null, states, constants); | |||
// TODO(Wanglongzhi2001),should cell_call_fn's return value be Tensors, Tensors? | |||
if (!nest.is_nested(new_states)) | |||
{ | |||
return (output, new Tensors { new_states }); | |||
@@ -351,7 +351,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
go_backwards: args.GoBackwards, | |||
mask: mask, | |||
unroll: args.Unroll, | |||
input_length: row_length != null ? row_length : new Tensor(timesteps), | |||
input_length: row_length != null ? new Tensor(row_length) : new Tensor(timesteps), | |||
time_major: args.TimeMajor, | |||
zero_output_for_mask: args.ZeroOutputForMask, | |||
return_all_outputs: args.ReturnSequences); | |||
@@ -387,24 +387,9 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
} | |||
} | |||
private (Tensors, Tensors, Tensors) _process_inputs(Tensor inputs, Tensors initial_state, Tensors constants) | |||
private (Tensors inputs, Tensors initial_state, Tensors constants) _process_inputs(Tensor inputs, Tensors initial_state, Tensors constants) | |||
{ | |||
bool IsSequence(object obj) | |||
{ | |||
// Check if the object is an IEnumerable | |||
if (obj is IEnumerable) | |||
{ | |||
// If it is, check if it is a tuple | |||
if (!(obj is Tuple)) | |||
{ | |||
return true; | |||
} | |||
} | |||
// If it is not, return false | |||
return false; | |||
} | |||
if (IsSequence(input)) | |||
if (nest.is_sequence(input)) | |||
{ | |||
if (_num_constants != 0) | |||
{ | |||
@@ -413,6 +398,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
else | |||
{ | |||
initial_state = inputs[new Slice(1, len(inputs) - _num_constants)]; | |||
constants = inputs[new Slice(len(inputs) - _num_constants, len(inputs))]; | |||
} | |||
if (len(initial_state) == 0) | |||
initial_state = null; | |||
@@ -421,32 +407,63 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
if (args.Stateful) | |||
{ | |||
throw new NotImplementedException("argument stateful has not been implemented!"); | |||
if (initial_state != null) | |||
{ | |||
var tmp = new Tensor[] { }; | |||
foreach (var s in nest.flatten(States)) | |||
{ | |||
tmp.add(tf.math.count_nonzero((Tensor)s)); | |||
} | |||
var non_zero_count = tf.add_n(tmp); | |||
//initial_state = tf.cond(non_zero_count > 0, () => States, () => initial_state); | |||
if((int)non_zero_count.numpy() > 0) | |||
{ | |||
initial_state = States; | |||
} | |||
} | |||
else | |||
{ | |||
initial_state = States; | |||
} | |||
} | |||
else if(initial_state != null) | |||
{ | |||
initial_state = get_initial_state(inputs); | |||
} | |||
return (inputs, initial_state, constants); | |||
if (initial_state.Length != States.Length) | |||
{ | |||
throw new ValueError( | |||
$"Layer {this} expects {States.Length} state(s), " + | |||
$"but it received {initial_state.Length} " + | |||
$"initial state(s). Input received: {inputs}"); | |||
} | |||
return (inputs, initial_state, constants); | |||
} | |||
private void _validate_args_if_ragged(bool is_ragged_input, Tensors mask) | |||
{ | |||
if (is_ragged_input) | |||
if (!is_ragged_input) | |||
{ | |||
if (args.Unroll) | |||
{ | |||
throw new ValueError("The input received contains RaggedTensors and does " + | |||
"not support unrolling. Disable unrolling by passing " + | |||
"`unroll=False` in the RNN Layer constructor."); | |||
} | |||
if (mask != null) | |||
{ | |||
throw new ValueError($"The mask that was passed in was {mask}, which " + | |||
"cannot be applied to RaggedTensor inputs. Please " + | |||
"make sure that there is no mask injected by upstream " + | |||
"layers."); | |||
} | |||
return; | |||
} | |||
if (args.Unroll) | |||
{ | |||
throw new ValueError("The input received contains RaggedTensors and does " + | |||
"not support unrolling. Disable unrolling by passing " + | |||
"`unroll=False` in the RNN Layer constructor."); | |||
} | |||
if (mask != null) | |||
{ | |||
throw new ValueError($"The mask that was passed in was {mask}, which " + | |||
"cannot be applied to RaggedTensor inputs. Please " + | |||
"make sure that there is no mask injected by upstream " + | |||
"layers."); | |||
} | |||
} | |||
void _maybe_reset_cell_dropout_mask(ILayer cell) | |||
@@ -489,46 +506,77 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public RNN New(LayerRnnCell cell, | |||
bool return_sequences = false, | |||
bool return_state = false, | |||
bool go_backwards = false, | |||
bool stateful = false, | |||
bool unroll = false, | |||
bool time_major = false) | |||
=> new RNN(new RNNArgs | |||
{ | |||
Cell = cell, | |||
ReturnSequences = return_sequences, | |||
ReturnState = return_state, | |||
GoBackwards = go_backwards, | |||
Stateful = stateful, | |||
Unroll = unroll, | |||
TimeMajor = time_major | |||
}); | |||
public RNN New(IList<IRnnArgCell> cell, | |||
bool return_sequences = false, | |||
bool return_state = false, | |||
bool go_backwards = false, | |||
bool stateful = false, | |||
bool unroll = false, | |||
bool time_major = false) | |||
=> new RNN(new RNNArgs | |||
{ | |||
Cell = new StackedRNNCells(new StackedRNNCellsArgs { Cells = cell }), | |||
ReturnSequences = return_sequences, | |||
ReturnState = return_state, | |||
GoBackwards = go_backwards, | |||
Stateful = stateful, | |||
Unroll = unroll, | |||
TimeMajor = time_major | |||
}); | |||
// 好像不能cell不能传接口类型 | |||
//public RNN New(IRnnArgCell cell, | |||
// bool return_sequences = false, | |||
// bool return_state = false, | |||
// bool go_backwards = false, | |||
// bool stateful = false, | |||
// bool unroll = false, | |||
// bool time_major = false) | |||
// => new RNN(new RNNArgs | |||
// { | |||
// Cell = cell, | |||
// ReturnSequences = return_sequences, | |||
// ReturnState = return_state, | |||
// GoBackwards = go_backwards, | |||
// Stateful = stateful, | |||
// Unroll = unroll, | |||
// TimeMajor = time_major | |||
// }); | |||
//public RNN New(List<IRnnArgCell> cell, | |||
// bool return_sequences = false, | |||
// bool return_state = false, | |||
// bool go_backwards = false, | |||
// bool stateful = false, | |||
// bool unroll = false, | |||
// bool time_major = false) | |||
// => new RNN(new RNNArgs | |||
// { | |||
// Cell = cell, | |||
// ReturnSequences = return_sequences, | |||
// ReturnState = return_state, | |||
// GoBackwards = go_backwards, | |||
// Stateful = stateful, | |||
// Unroll = unroll, | |||
// TimeMajor = time_major | |||
// }); | |||
protected Tensors get_initial_state(Tensor inputs) | |||
{ | |||
Type type = cell.GetType(); | |||
MethodInfo MethodInfo = type.GetMethod("get_initial_state"); | |||
if (nest.is_nested(inputs)) | |||
{ | |||
// The input are nested sequences. Use the first element in the seq | |||
// to get batch size and dtype. | |||
inputs = nest.flatten(inputs)[0]; | |||
} | |||
protected Tensor get_initial_state(Tensor inputs) | |||
{ | |||
return _generate_zero_filled_state_for_cell(null, null); | |||
var input_shape = tf.shape(inputs); | |||
var batch_size = args.TimeMajor ? input_shape[1] : input_shape[0]; | |||
var dtype = inputs.dtype; | |||
Tensor init_state; | |||
if (MethodInfo != null) | |||
{ | |||
init_state = (Tensor)MethodInfo.Invoke(cell, new object[] { null, batch_size, dtype }); | |||
} | |||
else | |||
{ | |||
init_state = RNNUtils.generate_zero_filled_state(batch_size, cell.state_size, dtype); | |||
} | |||
//if (!nest.is_nested(init_state)) | |||
//{ | |||
// init_state = new List<Tensor> { init_state}; | |||
//} | |||
return new List<Tensor> { init_state }; | |||
//return _generate_zero_filled_state_for_cell(null, null); | |||
} | |||
Tensor _generate_zero_filled_state_for_cell(LSTMCell cell, Tensor batch_size) | |||
@@ -0,0 +1,59 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Util; | |||
using OneOf; | |||
using Tensorflow.NumPy; | |||
namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
public class RNNUtils | |||
{ | |||
public static Tensor generate_zero_filled_state(Tensor batch_size_tensor, StateSizeWrapper state_size, TF_DataType dtype = TF_DataType.TF_FLOAT) | |||
{ | |||
if (batch_size_tensor == null || dtype == null) | |||
{ | |||
throw new ValueError( | |||
"batch_size and dtype cannot be None while constructing initial " + | |||
$"state. Received: batch_size={batch_size_tensor}, dtype={dtype}"); | |||
} | |||
Func<StateSizeWrapper, Tensor> create_zeros; | |||
create_zeros = (StateSizeWrapper unnested_state_size) => | |||
{ | |||
var flat_dims = unnested_state_size.state_size; | |||
//if (unnested_state_size is int[]) | |||
//{ | |||
// flat_dims = new Shape(unnested_state_size.AsT0).as_int_list(); | |||
//} | |||
//else if (unnested_state_size.IsT1) | |||
//{ | |||
// flat_dims = new Shape(unnested_state_size.AsT1).as_int_list(); | |||
//} | |||
var init_state_size = batch_size_tensor.ToArray<int>().concat(flat_dims); | |||
return tf.zeros(init_state_size, dtype: dtype); | |||
}; | |||
//if (nest.is_nested(state_size)) | |||
//{ | |||
// return nest.map_structure(create_zeros, state_size); | |||
//} | |||
//else | |||
//{ | |||
// return create_zeros(state_size); | |||
//} | |||
return create_zeros(state_size); | |||
} | |||
public static Tensor generate_zero_filled_state_for_cell(SimpleRNNCell cell, Tensors inputs, Tensor batch_size, TF_DataType dtype) | |||
{ | |||
if (inputs != null) | |||
{ | |||
batch_size = tf.shape(inputs)[0]; | |||
dtype = inputs.dtype; | |||
} | |||
return generate_zero_filled_state(batch_size, cell.state_size, dtype); | |||
} | |||
} | |||
} |
@@ -4,6 +4,7 @@ using System.Text; | |||
using Tensorflow.Keras.ArgsDefinition.Rnn; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Saving; | |||
using Tensorflow.Util; | |||
namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
@@ -13,10 +14,23 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
IVariableV1 kernel; | |||
IVariableV1 recurrent_kernel; | |||
IVariableV1 bias; | |||
DropoutRNNCellMixin DRCMixin; | |||
public SimpleRNNCell(SimpleRNNArgs args) : base(args) | |||
{ | |||
this.args = args; | |||
if (args.Units <= 0) | |||
{ | |||
throw new ValueError( | |||
$"units must be a positive integer, got {args.Units}"); | |||
} | |||
this.args.Dropout = Math.Min(1f, Math.Max(0f, this.args.Dropout)); | |||
this.args.RecurrentDropout = Math.Min(1f, Math.Max(0f, this.args.RecurrentDropout)); | |||
this.args.state_size = this.args.Units; | |||
this.args.output_size = this.args.Units; | |||
DRCMixin = new DropoutRNNCellMixin(); | |||
DRCMixin.dropout = this.args.Dropout; | |||
DRCMixin.recurrent_dropout = this.args.RecurrentDropout; | |||
} | |||
public override void build(KerasShapesWrapper input_shape) | |||
@@ -44,7 +58,81 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
{ | |||
return base.Call(inputs, initial_state, training); | |||
Console.WriteLine($"shape of input: {inputs.shape}"); | |||
Tensor states = initial_state[0]; | |||
Console.WriteLine($"shape of initial_state: {states.shape}"); | |||
var prev_output = nest.is_nested(states) ? states[0] : states; | |||
var dp_mask = DRCMixin.get_dropout_maskcell_for_cell(inputs, training.Value); | |||
var rec_dp_mask = DRCMixin.get_recurrent_dropout_maskcell_for_cell(prev_output, training.Value); | |||
Tensor h; | |||
var ranks = inputs.rank; | |||
//if (dp_mask != null) | |||
if(false) | |||
{ | |||
if (ranks > 2) | |||
{ | |||
h = tf.linalg.tensordot(tf.multiply(inputs, dp_mask), kernel.AsTensor(), new[,] { { ranks - 1 }, { 0 } }); | |||
} | |||
else | |||
{ | |||
h = math_ops.matmul(tf.multiply(inputs, dp_mask), kernel.AsTensor()); | |||
} | |||
} | |||
else | |||
{ | |||
if (ranks > 2) | |||
{ | |||
h = tf.linalg.tensordot(inputs, kernel.AsTensor(), new[,] { { ranks - 1 }, { 0 } }); | |||
} | |||
else | |||
{ | |||
h = math_ops.matmul(inputs, kernel.AsTensor()); | |||
} | |||
} | |||
if (bias != null) | |||
{ | |||
h = tf.nn.bias_add(h, bias); | |||
} | |||
if (rec_dp_mask != null) | |||
{ | |||
prev_output = tf.multiply(prev_output, rec_dp_mask); | |||
} | |||
ranks = prev_output.rank; | |||
Console.WriteLine($"shape of h: {h.shape}"); | |||
Tensor output; | |||
if (ranks > 2) | |||
{ | |||
var tmp = tf.linalg.tensordot(prev_output, recurrent_kernel.AsTensor(), new[,] { { ranks - 1 }, { 0 } }); | |||
output = h + tf.linalg.tensordot(prev_output, recurrent_kernel.AsTensor(), new[,] { { ranks - 1 }, { 0 } })[0]; | |||
} | |||
else | |||
{ | |||
output = h + math_ops.matmul(prev_output, recurrent_kernel.AsTensor())[0]; | |||
} | |||
Console.WriteLine($"shape of output: {output.shape}"); | |||
if (args.Activation != null) | |||
{ | |||
output = args.Activation.Apply(output); | |||
} | |||
if (nest.is_nested(states)) | |||
{ | |||
return (output, new Tensors { output }); | |||
} | |||
return (output, output); | |||
} | |||
public Tensor get_initial_state(Tensors inputs, Tensor batch_size, TF_DataType dtype) | |||
{ | |||
return RNNUtils.generate_zero_filled_state_for_cell(this, inputs, batch_size, dtype); | |||
} | |||
} | |||
} |
@@ -89,7 +89,7 @@ namespace Tensorflow.Hub | |||
} | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensor mask = null, bool? training = null, Tensors initial_state = null, Tensors constants = null) | |||
{ | |||
_check_trainability(); | |||
@@ -1,60 +0,0 @@ | |||
using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
using System.Collections.Generic; | |||
using Tensorflow.Keras.Callbacks; | |||
using Tensorflow.Keras.Engine; | |||
using static Tensorflow.KerasApi; | |||
namespace Tensorflow.Keras.UnitTest.Callbacks | |||
{ | |||
[TestClass] | |||
public class EarlystoppingTest | |||
{ | |||
[TestMethod] | |||
// Because loading the weight variable into the model has not yet been implemented, | |||
// so you'd better not set patience too large, because the weights will equal to the last epoch's weights. | |||
public void Earlystopping() | |||
{ | |||
var layers = keras.layers; | |||
var model = keras.Sequential(new List<ILayer> | |||
{ | |||
layers.Rescaling(1.0f / 255, input_shape: (32, 32, 3)), | |||
layers.Conv2D(32, 3, padding: "same", activation: keras.activations.Relu), | |||
layers.MaxPooling2D(), | |||
layers.Flatten(), | |||
layers.Dense(128, activation: keras.activations.Relu), | |||
layers.Dense(10) | |||
}); | |||
model.summary(); | |||
model.compile(optimizer: keras.optimizers.RMSprop(1e-3f), | |||
loss: keras.losses.SparseCategoricalCrossentropy(from_logits: true), | |||
metrics: new[] { "acc" }); | |||
var num_epochs = 3; | |||
var batch_size = 8; | |||
var ((x_train, y_train), (x_test, y_test)) = keras.datasets.cifar10.load_data(); | |||
x_train = x_train / 255.0f; | |||
// define a CallbackParams first, the parameters you pass al least contain Model and Epochs. | |||
CallbackParams callback_parameters = new CallbackParams | |||
{ | |||
Model = model, | |||
Epochs = num_epochs, | |||
}; | |||
// define your earlystop | |||
ICallback earlystop = new EarlyStopping(callback_parameters, "accuracy"); | |||
// define a callbcaklist, then add the earlystopping to it. | |||
var callbacks = new List<ICallback>(); | |||
callbacks.add(earlystop); | |||
model.fit(x_train[new Slice(0, 2000)], y_train[new Slice(0, 2000)], batch_size, num_epochs, callbacks: callbacks); | |||
} | |||
} | |||
} | |||
@@ -144,6 +144,17 @@ namespace Tensorflow.Keras.UnitTest.Layers | |||
Assert.AreEqual(expected_output, actual_output); | |||
} | |||
[TestMethod] | |||
public void SimpleRNNCell() | |||
{ | |||
var h0 = new Tensors { tf.zeros(new Shape(4, 64)) }; | |||
var x = tf.random.normal(new Shape(4, 100)); | |||
var cell = keras.layers.SimpleRNNCell(64); | |||
var (y, h1) = cell.Apply(inputs:x, state:h0); | |||
Assert.AreEqual((4, 64), y.shape); | |||
Assert.AreEqual((4, 64), h1[0].shape); | |||
} | |||
[TestMethod, Ignore("WIP")] | |||
public void SimpleRNN() | |||
{ | |||
@@ -67,4 +67,8 @@ | |||
</None> | |||
</ItemGroup> | |||
<ItemGroup> | |||
<Folder Include="Callbacks\" /> | |||
</ItemGroup> | |||
</Project> |