Browse Source

update change log.

tags/v0.12
Oceania2018 6 years ago
parent
commit
b1a0bf600e
2 changed files with 9 additions and 5 deletions
  1. +7
    -4
      src/TensorFlowNET.Core/TensorFlowNET.Core.csproj
  2. +2
    -1
      test/TensorFlowNET.UnitTest/GraphTest.cs

+ 7
- 4
src/TensorFlowNET.Core/TensorFlowNET.Core.csproj View File

@@ -5,7 +5,7 @@
<AssemblyName>TensorFlow.NET</AssemblyName>
<RootNamespace>Tensorflow</RootNamespace>
<TargetTensorFlow>1.14.0</TargetTensorFlow>
<Version>0.11.1</Version>
<Version>0.11.2</Version>
<Authors>Haiping Chen, Meinrad Recheis, Eli Belash</Authors>
<Company>SciSharp STACK</Company>
<GeneratePackageOnBuild>true</GeneratePackageOnBuild>
@@ -17,16 +17,19 @@
<PackageTags>TensorFlow, NumSharp, SciSharp, MachineLearning, TensorFlow.NET, C#</PackageTags>
<Description>Google's TensorFlow full binding in .NET Standard.
Docs: https://tensorflownet.readthedocs.io</Description>
<AssemblyVersion>0.11.1.0</AssemblyVersion>
<AssemblyVersion>0.11.2.0</AssemblyVersion>
<PackageReleaseNotes>Changes since v0.10.0:
1. Upgrade NumSharp to v0.20.
2. Add DisposableObject class to manage object lifetime.
3. Add tf.no_op, tf.nn.in_top_k, tf.GraphKeys and tf.trainable_variables.
4. Change tensorflow to non-static class in order to execute some initialization process.
5. Overload session.run(), make syntax simpler.
6. Add Local Response Normalization.</PackageReleaseNotes>
6. Add Local Response Normalization.
7. Add tf.image related APIs.
8. Add tf.random_normal, tf.constant, tf.pad.
9. MultiThread is safe.</PackageReleaseNotes>
<LangVersion>7.3</LangVersion>
<FileVersion>0.11.1.0</FileVersion>
<FileVersion>0.11.2.0</FileVersion>
<PackageLicenseFile>LICENSE</PackageLicenseFile>
<PackageRequireLicenseAcceptance>true</PackageRequireLicenseAcceptance>
<SignAssembly>true</SignAssembly>


+ 2
- 1
test/TensorFlowNET.UnitTest/GraphTest.cs View File

@@ -411,13 +411,14 @@ namespace TensorFlowNET.UnitTest

}

[Ignore]
[TestMethod]
public void ImportGraphMeta()
{
var dir = "my-save-dir/";
using (var sess = tf.Session())
{
var new_saver = tf.train.import_meta_graph(@"D:\tmp\resnet_v2_101_2017_04_14\eval.graph");
var new_saver = tf.train.import_meta_graph(dir + "my-model-10000.meta");
new_saver.restore(sess, dir + "my-model-10000");
var labels = tf.constant(0, dtype: tf.int32, shape: new int[] { 100 }, name: "labels");
var batch_size = tf.size(labels);


Loading…
Cancel
Save