@@ -6,6 +6,12 @@ namespace Tensorflow | |||||
{ | { | ||||
public static partial class tf | public static partial class tf | ||||
{ | { | ||||
public static nn_impl nn => new nn_impl(); | |||||
public static class nn | |||||
{ | |||||
public static (Tensor, Tensor) moments(Tensor x, | |||||
int[] axes, | |||||
string name = null, | |||||
bool keep_dims = false) => nn_impl.moments(x, axes, name: name, keep_dims: keep_dims); | |||||
} | |||||
} | } | ||||
} | } |
@@ -22,7 +22,7 @@ namespace Tensorflow | |||||
/// <returns> A `Tensor`. Has the same type as `input`.</returns> | /// <returns> A `Tensor`. Has the same type as `input`.</returns> | ||||
public static Tensor mean(Tensor input, Tensor axis, bool keep_dims= false, string name = null) | public static Tensor mean(Tensor input, Tensor axis, bool keep_dims= false, string name = null) | ||||
{ | { | ||||
var _op = _op_def_lib._apply_op_helper("Mean", name, args: new { input, axis }); | |||||
var _op = _op_def_lib._apply_op_helper("Mean", name, args: new { input, reduction_indices = axis, keep_dims = keep_dims }); | |||||
return _op.outputs[0]; | return _op.outputs[0]; | ||||
} | } | ||||
@@ -39,7 +39,7 @@ namespace Tensorflow | |||||
{ | { | ||||
var r = _ReductionDims(input_tensor, new Tensor(axis)); | var r = _ReductionDims(input_tensor, new Tensor(axis)); | ||||
var m = gen_math_ops.mean(input_tensor, r); | var m = gen_math_ops.mean(input_tensor, r); | ||||
return _may_reduce_to_scalar(keepdims, m); | |||||
return _may_reduce_to_scalar(keepdims,axis, m); | |||||
} | } | ||||
/// <summary> | /// <summary> | ||||
/// Returns (x - y)(x - y) element-wise. | /// Returns (x - y)(x - y) element-wise. | ||||
@@ -117,6 +117,12 @@ namespace Tensorflow | |||||
return output; | return output; | ||||
} | } | ||||
private static Tensor _may_reduce_to_scalar(bool keepdims, int[] axos, Tensor output) | |||||
{ | |||||
output.shape = new long[0]; | |||||
return output; | |||||
} | |||||
private static Tensor _ReductionDims(Tensor x, Tensor axis) | private static Tensor _ReductionDims(Tensor x, Tensor axis) | ||||
{ | { | ||||
if (axis != null) | if (axis != null) | ||||
@@ -130,6 +136,24 @@ namespace Tensorflow | |||||
} | } | ||||
} | } | ||||
private static int[] _ReductionDims(Tensor x, int[] axis) | |||||
{ | |||||
if (axis != null) | |||||
{ | |||||
return axis; | |||||
} | |||||
else | |||||
{ | |||||
var rank = array_ops.rank(x); | |||||
if (rank != null) | |||||
{ | |||||
// return constant_op.constant(); | |||||
} | |||||
// return range(0, rank, 1); | |||||
throw new NotFiniteNumberException(); | |||||
} | |||||
} | |||||
public static Tensor range(object start, object limit = null, object delta = null, TF_DataType dtype = TF_DataType.DtInvalid, string name = "range" ) | public static Tensor range(object start, object limit = null, object delta = null, TF_DataType dtype = TF_DataType.DtInvalid, string name = "range" ) | ||||
{ | { | ||||
if(limit == null) | if(limit == null) | ||||
@@ -14,13 +14,12 @@ namespace Tensorflow | |||||
/// <param name="name"> Name used to scope the operations that compute the moments.</param> | /// <param name="name"> Name used to scope the operations that compute the moments.</param> | ||||
/// <param name="keep_dims"> Produce moments with the same dimensionality as the input.</param> | /// <param name="keep_dims"> Produce moments with the same dimensionality as the input.</param> | ||||
/// <returns> Two `Tensor` objects: `mean` and `variance`.</returns> | /// <returns> Two `Tensor` objects: `mean` and `variance`.</returns> | ||||
public Tuple<Tensor, Tensor> moments(Tensor x, | |||||
public static (Tensor, Tensor) moments(Tensor x, | |||||
int[] axes, | int[] axes, | ||||
string name = null, | string name = null, | ||||
bool keep_dims = false) | bool keep_dims = false) | ||||
{ | { | ||||
Tuple<Tensor, Tensor> t = null; | |||||
with(new ops.name_scope(name, "moments", new { x, axes }), scope => | |||||
return with<ops.name_scope, (Tensor, Tensor)>(new ops.name_scope(name, "moments", new { x, axes }), scope => | |||||
{ | { | ||||
// The dynamic range of fp16 is too limited to support the collection of | // The dynamic range of fp16 is too limited to support the collection of | ||||
// sufficient statistics. As a workaround we simply perform the operations | // sufficient statistics. As a workaround we simply perform the operations | ||||
@@ -40,15 +39,10 @@ namespace Tensorflow | |||||
} | } | ||||
// TODO: if x.dtype == dtypes.float16: | // TODO: if x.dtype == dtypes.float16: | ||||
if (x.dtype == TF_DataType.TF_FLOAT) | if (x.dtype == TF_DataType.TF_FLOAT) | ||||
{ | |||||
t = Tuple.Create(math_ops.cast(mean, x.dtype), math_ops.cast(variance, x.dtype)); | |||||
return; | |||||
} | |||||
else { | |||||
t = Tuple.Create(mean, variance); | |||||
} | |||||
return (math_ops.cast(mean, x.dtype), math_ops.cast(variance, x.dtype)); | |||||
else | |||||
return (mean, variance); | |||||
}); | }); | ||||
return t; | |||||
} | } | ||||
} | } | ||||
} | } |
@@ -19,7 +19,6 @@ namespace TensorFlowNET.Examples | |||||
// var X = np.array<float[]>(new float[][] { new float[] { 1.0f, 1.0f}, new float[] { 2.0f, 2.0f }, new float[] { -1.0f, -1.0f }, new float[] { -2.0f, -2.0f }, new float[] { 1.0f, -1.0f }, new float[] { 2.0f, -2.0f }, }); | // var X = np.array<float[]>(new float[][] { new float[] { 1.0f, 1.0f}, new float[] { 2.0f, 2.0f }, new float[] { -1.0f, -1.0f }, new float[] { -2.0f, -2.0f }, new float[] { 1.0f, -1.0f }, new float[] { 2.0f, -2.0f }, }); | ||||
var X = np.array<float>(new float[][] { new float[] { 1.0f, 1.0f }, new float[] { 2.0f, 2.0f }, new float[] { -1.0f, -1.0f }, new float[] { -2.0f, -2.0f }, new float[] { 1.0f, -1.0f }, new float[] { 2.0f, -2.0f }, }); | var X = np.array<float>(new float[][] { new float[] { 1.0f, 1.0f }, new float[] { 2.0f, 2.0f }, new float[] { -1.0f, -1.0f }, new float[] { -2.0f, -2.0f }, new float[] { 1.0f, -1.0f }, new float[] { 2.0f, -2.0f }, }); | ||||
var y = np.array<int>(0,0,1,1,2,2); | var y = np.array<int>(0,0,1,1,2,2); | ||||
fit(X, y); | fit(X, y); | ||||
// Create a regular grid and classify each point | // Create a regular grid and classify each point | ||||
@@ -28,12 +27,12 @@ namespace TensorFlowNET.Examples | |||||
public void fit(NDArray X, NDArray y) | public void fit(NDArray X, NDArray y) | ||||
{ | { | ||||
NDArray unique_y = y.unique<long>(); | NDArray unique_y = y.unique<long>(); | ||||
Dictionary<long, List<NDArray>> dic = new Dictionary<long, List<NDArray>>(); | |||||
Dictionary<long, List<List<float>>> dic = new Dictionary<long, List<List<float>>>(); | |||||
// Init uy in dic | // Init uy in dic | ||||
foreach (int uy in unique_y.Data<int>()) | foreach (int uy in unique_y.Data<int>()) | ||||
{ | { | ||||
dic.Add(uy, new List<NDArray>()); | |||||
dic.Add(uy, new List<List<float>>()); | |||||
} | } | ||||
// Separate training points by class | // Separate training points by class | ||||
// Shape : nb_classes * nb_samples * nb_features | // Shape : nb_classes * nb_samples * nb_features | ||||
@@ -41,28 +40,35 @@ namespace TensorFlowNET.Examples | |||||
for (int i = 0; i < y.size; i++) | for (int i = 0; i < y.size; i++) | ||||
{ | { | ||||
long curClass = (long)y[i]; | long curClass = (long)y[i]; | ||||
List<NDArray> l = dic[curClass]; | |||||
l.Add(X[i] as NDArray); | |||||
List<List<float>> l = dic[curClass]; | |||||
List<float> pair = new List<float>(); | |||||
pair.Add((float)X[i,0]); | |||||
pair.Add((float)X[i, 1]); | |||||
l.Add(pair); | |||||
if (l.Count > maxCount) | if (l.Count > maxCount) | ||||
{ | { | ||||
maxCount = l.Count; | maxCount = l.Count; | ||||
} | } | ||||
dic[curClass] = l; | dic[curClass] = l; | ||||
} | } | ||||
NDArray points_by_class = np.zeros(new int[] { dic.Count, maxCount, X.shape[1] }); | |||||
foreach (KeyValuePair<long, List<NDArray>> kv in dic) | |||||
float[,,] points = new float[dic.Count, maxCount, X.shape[1]]; | |||||
foreach (KeyValuePair<long, List<List<float>>> kv in dic) | |||||
{ | { | ||||
var cls = kv.Value.ToArray(); | |||||
for (int i = 0; i < dic.Count; i++) | |||||
int j = (int) kv.Key; | |||||
for (int i = 0; i < maxCount; i++) | |||||
{ | { | ||||
points_by_class[i] = dic[i]; | |||||
for (int k = 0; k < X.shape[1]; k++) | |||||
{ | |||||
points[j, i, k] = kv.Value[i][k]; | |||||
} | |||||
} | } | ||||
} | |||||
} | |||||
NDArray points_by_class = np.array<float>(points); | |||||
// estimate mean and variance for each class / feature | // estimate mean and variance for each class / feature | ||||
// shape : nb_classes * nb_features | // shape : nb_classes * nb_features | ||||
var cons = tf.constant(points_by_class); | var cons = tf.constant(points_by_class); | ||||
Tuple<Tensor, Tensor> tup = tf.nn.moments(cons, new int[]{1}); | |||||
var tup = tf.nn.moments(cons, new int[]{1}); | |||||
var mean = tup.Item1; | var mean = tup.Item1; | ||||
var variance = tup.Item2; | var variance = tup.Item2; | ||||
// Create a 3x2 univariate normal distribution with the | // Create a 3x2 univariate normal distribution with the | ||||
@@ -20,6 +20,9 @@ | |||||
<Reference Include="Newtonsoft.Json"> | <Reference Include="Newtonsoft.Json"> | ||||
<HintPath>C:\Program Files\dotnet\sdk\NuGetFallbackFolder\newtonsoft.json\9.0.1\lib\netstandard1.0\Newtonsoft.Json.dll</HintPath> | <HintPath>C:\Program Files\dotnet\sdk\NuGetFallbackFolder\newtonsoft.json\9.0.1\lib\netstandard1.0\Newtonsoft.Json.dll</HintPath> | ||||
</Reference> | </Reference> | ||||
<Reference Include="NumSharp.Core"> | |||||
<HintPath>C:\Users\bpeng\Desktop\BoloReborn\NumSharp\src\NumSharp.Core\bin\Debug\netstandard2.0\NumSharp.Core.dll</HintPath> | |||||
</Reference> | |||||
</ItemGroup> | </ItemGroup> | ||||
</Project> | </Project> |