diff --git a/src/TensorFlowNET.Core/Keras/Activations/Activations.cs b/src/TensorFlowNET.Core/Keras/Activations/Activations.cs
index ea01b319..e24e42ff 100644
--- a/src/TensorFlowNET.Core/Keras/Activations/Activations.cs
+++ b/src/TensorFlowNET.Core/Keras/Activations/Activations.cs
@@ -28,10 +28,10 @@ namespace Tensorflow.Keras
}
///
- /// The ActivationAdaptor is used to store string, Activation, and Func for Laysers Api to accept different types of activation parameters.
+ /// The ActivationAdapter is used to store string, Activation, and Func for Laysers Api to accept different types of activation parameters.
/// One of the properties must be specified while initializing.
///
- public class ActivationAdaptor
+ public class ActivationAdapter
{
///
/// The name of activaiton function, such as `tanh`, `sigmoid`.
@@ -48,34 +48,34 @@ namespace Tensorflow.Keras
///
public Func? Func { get; set; } = null;
- public ActivationAdaptor(string name)
+ public ActivationAdapter(string name)
{
Name = name;
}
- public ActivationAdaptor(Activation activation)
+ public ActivationAdapter(Activation activation)
{
Activation = activation;
}
- public ActivationAdaptor(Func func)
+ public ActivationAdapter(Func func)
{
Func = func;
}
- public static implicit operator ActivationAdaptor(string name)
+ public static implicit operator ActivationAdapter(string name)
{
- return new ActivationAdaptor(name);
+ return new ActivationAdapter(name);
}
- public static implicit operator ActivationAdaptor(Activation activation)
+ public static implicit operator ActivationAdapter(Activation activation)
{
- return new ActivationAdaptor(activation);
+ return new ActivationAdapter(activation);
}
- public static implicit operator ActivationAdaptor(Func func)
+ public static implicit operator ActivationAdapter(Func func)
{
- return new ActivationAdaptor(func);
+ return new ActivationAdapter(func);
}
}
@@ -84,7 +84,7 @@ namespace Tensorflow.Keras
{
Activation GetActivationFromName(string name);
- Activation GetActivationFromAdaptor(ActivationAdaptor adaptor);
+ Activation GetActivationFromAdapter(ActivationAdapter adapter);
Activation Linear { get; }
diff --git a/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.cs b/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.cs
index abeac4e5..b17f635b 100644
--- a/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.cs
+++ b/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.cs
@@ -48,7 +48,7 @@ namespace Tensorflow.Keras.Layers
string data_format = "channels_last",
int dilation_rate = 1,
int groups = 1,
- ActivationAdaptor activation = null,
+ ActivationAdapter activation = null,
bool use_bias = true,
string kernel_initializer = "glorot_uniform",
string bias_initializer = "zeros");
@@ -71,7 +71,7 @@ namespace Tensorflow.Keras.Layers
string data_format = null,
Shape dilation_rate = null,
int groups = 1,
- ActivationAdaptor activation = null,
+ ActivationAdapter activation = null,
bool use_bias = true,
IInitializer kernel_initializer = null,
IInitializer bias_initializer = null,
@@ -99,7 +99,7 @@ namespace Tensorflow.Keras.Layers
string output_padding = "valid",
string data_format = null,
Shape dilation_rate = null,
- ActivationAdaptor activation = null,
+ ActivationAdapter activation = null,
bool use_bias = true,
string kernel_initializer = null,
string bias_initializer = null,
@@ -121,7 +121,7 @@ namespace Tensorflow.Keras.Layers
string activity_regularizer = null);
public ILayer Dense(int units,
- ActivationAdaptor activation = null,
+ ActivationAdapter activation = null,
IInitializer kernel_initializer = null,
bool use_bias = true,
IInitializer bias_initializer = null,
@@ -155,7 +155,7 @@ namespace Tensorflow.Keras.Layers
public ILayer EinsumDense(string equation,
Shape output_shape,
string bias_axes,
- ActivationAdaptor activation = null,
+ ActivationAdapter activation = null,
IInitializer kernel_initializer = null,
IInitializer bias_initializer = null,
IRegularizer kernel_regularizer = null,
@@ -209,8 +209,8 @@ namespace Tensorflow.Keras.Layers
public ILayer LeakyReLU(float alpha = 0.3f);
public ILayer LSTM(int units,
- ActivationAdaptor activation = null,
- ActivationAdaptor recurrent_activation = null,
+ ActivationAdapter activation = null,
+ ActivationAdapter recurrent_activation = null,
bool use_bias = true,
IInitializer kernel_initializer = null,
IInitializer recurrent_initializer = null,
@@ -259,7 +259,7 @@ namespace Tensorflow.Keras.Layers
Shape input_shape = null);
public ILayer SimpleRNN(int units,
- ActivationAdaptor activation = null,
+ ActivationAdapter activation = null,
string kernel_initializer = "glorot_uniform",
string recurrent_initializer = "orthogonal",
string bias_initializer = "zeros",
diff --git a/src/TensorFlowNET.Keras/Activations.cs b/src/TensorFlowNET.Keras/Activations.cs
index 4d08c77e..89988667 100644
--- a/src/TensorFlowNET.Keras/Activations.cs
+++ b/src/TensorFlowNET.Keras/Activations.cs
@@ -94,37 +94,37 @@ namespace Tensorflow.Keras
}
///
- /// Convert ActivationAdaptor to Activation.
- /// If more than one properties of ActivationAdaptor are specified, the order of priority is `Name`, `Activation`, `Func`
+ /// Convert ActivationAdapter to Activation.
+ /// If more than one properties of ActivationAdapter are specified, the order of priority is `Name`, `Activation`, `Func`
///
- ///
+ ///
///
///
- public Activation GetActivationFromAdaptor(ActivationAdaptor adaptor)
+ public Activation GetActivationFromAdapter(ActivationAdapter adapter)
{
- if(adaptor == null)
+ if(adapter == null)
{
return _linear;
}
- if(adaptor.Name != null)
+ if(adapter.Name != null)
{
- return GetActivationFromName(adaptor.Name);
+ return GetActivationFromName(adapter.Name);
}
- else if(adaptor.Activation != null)
+ else if(adapter.Activation != null)
{
- return adaptor.Activation;
+ return adapter.Activation;
}
- else if(adaptor.Func != null)
+ else if(adapter.Func != null)
{
return new Activation()
{
- Name = adaptor.Func.GetMethodInfo().Name,
- ActivationFunction = adaptor.Func
+ Name = adapter.Func.GetMethodInfo().Name,
+ ActivationFunction = adapter.Func
};
}
else
{
- throw new Exception("Could not interpret activation adaptor");
+ throw new Exception("Could not interpret activation adapter");
}
}
}
diff --git a/src/TensorFlowNET.Keras/Layers/LayersApi.cs b/src/TensorFlowNET.Keras/Layers/LayersApi.cs
index 776feb48..9349f50f 100644
--- a/src/TensorFlowNET.Keras/Layers/LayersApi.cs
+++ b/src/TensorFlowNET.Keras/Layers/LayersApi.cs
@@ -94,7 +94,7 @@ namespace Tensorflow.Keras.Layers
string data_format = "channels_last",
int dilation_rate = 1,
int groups = 1,
- ActivationAdaptor activation = null,
+ ActivationAdapter activation = null,
bool use_bias = true,
string kernel_initializer = "glorot_uniform",
string bias_initializer = "zeros")
@@ -109,7 +109,7 @@ namespace Tensorflow.Keras.Layers
DilationRate = dilation_rate,
Groups = groups,
UseBias = use_bias,
- Activation = keras.activations.GetActivationFromAdaptor(activation),
+ Activation = keras.activations.GetActivationFromAdapter(activation),
KernelInitializer = GetInitializerByName(kernel_initializer),
BiasInitializer = GetInitializerByName(bias_initializer)
});
@@ -167,7 +167,7 @@ namespace Tensorflow.Keras.Layers
string data_format = null,
Shape dilation_rate = null,
int groups = 1,
- ActivationAdaptor activation = null,
+ ActivationAdapter activation = null,
bool use_bias = true,
IInitializer kernel_initializer = null,
IInitializer bias_initializer = null,
@@ -190,7 +190,7 @@ namespace Tensorflow.Keras.Layers
BiasInitializer = bias_initializer == null ? tf.zeros_initializer : bias_initializer,
BiasRegularizer = bias_regularizer,
ActivityRegularizer = activity_regularizer,
- Activation = keras.activations.GetActivationFromAdaptor(activation),
+ Activation = keras.activations.GetActivationFromAdapter(activation),
});
public ILayer Conv2D(int filters,
Shape kernel_size = null,
@@ -248,7 +248,7 @@ namespace Tensorflow.Keras.Layers
string output_padding = "valid",
string data_format = null,
Shape dilation_rate = null,
- ActivationAdaptor activation = null,
+ ActivationAdapter activation = null,
bool use_bias = true,
string kernel_initializer = null,
string bias_initializer = null,
@@ -267,7 +267,7 @@ namespace Tensorflow.Keras.Layers
UseBias = use_bias,
KernelInitializer = GetInitializerByName(kernel_initializer),
BiasInitializer = GetInitializerByName(bias_initializer),
- Activation = keras.activations.GetActivationFromAdaptor(activation)
+ Activation = keras.activations.GetActivationFromAdapter(activation)
});
public ILayer Conv2DTranspose(int filters,
Shape kernel_size = null,
@@ -317,7 +317,7 @@ namespace Tensorflow.Keras.Layers
/// Constraint function for the bias.
/// N-D tensor with shape: (batch_size, ..., units). For instance, for a 2D input with shape (batch_size, input_dim), the output would have shape (batch_size, units).
public ILayer Dense(int units,
- ActivationAdaptor activation = null,
+ ActivationAdapter activation = null,
IInitializer kernel_initializer = null,
bool use_bias = true,
IInitializer bias_initializer = null,
@@ -330,7 +330,7 @@ namespace Tensorflow.Keras.Layers
=> new Dense(new DenseArgs
{
Units = units,
- Activation = keras.activations.GetActivationFromAdaptor(activation),
+ Activation = keras.activations.GetActivationFromAdapter(activation),
KernelInitializer = kernel_initializer ?? tf.glorot_uniform_initializer,
BiasInitializer = bias_initializer ?? (use_bias ? tf.zeros_initializer : null),
InputShape = input_shape,
@@ -386,7 +386,7 @@ namespace Tensorflow.Keras.Layers
///
public Tensor dense(Tensor inputs,
int units,
- ActivationAdaptor activation = null,
+ ActivationAdapter activation = null,
bool use_bias = true,
IInitializer kernel_initializer = null,
IInitializer bias_initializer = null,
@@ -405,7 +405,7 @@ namespace Tensorflow.Keras.Layers
var layer = new Dense(new DenseArgs
{
Units = units,
- Activation = keras.activations.GetActivationFromAdaptor(activation),
+ Activation = keras.activations.GetActivationFromAdapter(activation),
UseBias = use_bias,
BiasInitializer = bias_initializer,
KernelInitializer = kernel_initializer,
@@ -460,7 +460,7 @@ namespace Tensorflow.Keras.Layers
public ILayer EinsumDense(string equation,
Shape output_shape,
string bias_axes,
- ActivationAdaptor activation = null,
+ ActivationAdapter activation = null,
IInitializer kernel_initializer= null,
IInitializer bias_initializer= null,
IRegularizer kernel_regularizer= null,
@@ -473,7 +473,7 @@ namespace Tensorflow.Keras.Layers
Equation = equation,
OutputShape = output_shape,
BiasAxes = bias_axes,
- Activation = keras.activations.GetActivationFromAdaptor(activation),
+ Activation = keras.activations.GetActivationFromAdapter(activation),
KernelInitializer = kernel_initializer ?? tf.glorot_uniform_initializer,
BiasInitializer = bias_initializer ?? tf.zeros_initializer,
KernelRegularizer = kernel_regularizer,
@@ -807,7 +807,7 @@ namespace Tensorflow.Keras.Layers
/// The name of the activation function to use. Default: hyperbolic tangent (tanh)..
///
public ILayer SimpleRNN(int units,
- ActivationAdaptor activation = null,
+ ActivationAdapter activation = null,
string kernel_initializer = "glorot_uniform",
string recurrent_initializer = "orthogonal",
string bias_initializer = "zeros",
@@ -816,7 +816,7 @@ namespace Tensorflow.Keras.Layers
=> new SimpleRNN(new SimpleRNNArgs
{
Units = units,
- Activation = activation == null ? keras.activations.GetActivationFromAdaptor(activation): keras.activations.Tanh,
+ Activation = activation == null ? keras.activations.GetActivationFromAdapter(activation): keras.activations.Tanh,
KernelInitializer = GetInitializerByName(kernel_initializer),
RecurrentInitializer = GetInitializerByName(recurrent_initializer),
BiasInitializer = GetInitializerByName(bias_initializer),
@@ -869,8 +869,8 @@ namespace Tensorflow.Keras.Layers
///
///
public ILayer LSTM(int units,
- ActivationAdaptor activation = null,
- ActivationAdaptor recurrent_activation = null,
+ ActivationAdapter activation = null,
+ ActivationAdapter recurrent_activation = null,
bool use_bias = true,
IInitializer kernel_initializer = null,
IInitializer recurrent_initializer = null,
@@ -888,8 +888,8 @@ namespace Tensorflow.Keras.Layers
=> new LSTM(new LSTMArgs
{
Units = units,
- Activation = activation == null ? keras.activations.GetActivationFromAdaptor(activation) : keras.activations.Tanh,
- RecurrentActivation = recurrent_activation == null ? keras.activations.GetActivationFromAdaptor(activation) : keras.activations.Sigmoid,
+ Activation = activation == null ? keras.activations.GetActivationFromAdapter(activation) : keras.activations.Tanh,
+ RecurrentActivation = recurrent_activation == null ? keras.activations.GetActivationFromAdapter(activation) : keras.activations.Sigmoid,
KernelInitializer = kernel_initializer ?? tf.glorot_uniform_initializer,
RecurrentInitializer = recurrent_initializer ?? tf.orthogonal_initializer,
BiasInitializer = bias_initializer ?? tf.zeros_initializer,