@@ -16,25 +16,50 @@ namespace Tensorflow.NumPy | |||
{ | |||
public object construct(object[] args) | |||
{ | |||
Console.WriteLine("DtypeConstructor"); | |||
Console.WriteLine(args.Length); | |||
for (int i = 0; i < args.Length; i++) | |||
{ | |||
Console.WriteLine(args[i]); | |||
} | |||
return new demo(); | |||
var typeCode = (string)args[0]; | |||
TF_DataType dtype; | |||
if (typeCode == "b1") | |||
dtype = np.@bool; | |||
else if (typeCode == "i1") | |||
dtype = np.@byte; | |||
else if (typeCode == "i2") | |||
dtype = np.int16; | |||
else if (typeCode == "i4") | |||
dtype = np.int32; | |||
else if (typeCode == "i8") | |||
dtype = np.int64; | |||
else if (typeCode == "u1") | |||
dtype = np.ubyte; | |||
else if (typeCode == "u2") | |||
dtype = np.uint16; | |||
else if (typeCode == "u4") | |||
dtype = np.uint32; | |||
else if (typeCode == "u8") | |||
dtype = np.uint64; | |||
else if (typeCode == "f4") | |||
dtype = np.float32; | |||
else if (typeCode == "f8") | |||
dtype = np.float64; | |||
else if (typeCode.StartsWith("S")) | |||
dtype = np.@string; | |||
else if (typeCode.StartsWith("O")) | |||
dtype = np.@object; | |||
else | |||
throw new NotSupportedException(); | |||
return new TF_DataType_Warpper(dtype); | |||
} | |||
} | |||
class demo | |||
public class TF_DataType_Warpper | |||
{ | |||
public void __setstate__(object[] args) | |||
TF_DataType dtype { get; set; } | |||
public TF_DataType_Warpper(TF_DataType dtype) | |||
{ | |||
Console.WriteLine("demo __setstate__"); | |||
Console.WriteLine(args.Length); | |||
for (int i = 0; i < args.Length; i++) | |||
{ | |||
Console.WriteLine(args[i]); | |||
} | |||
this.dtype = dtype; | |||
} | |||
public void __setstate__(object[] args) { } | |||
public static implicit operator TF_DataType(TF_DataType_Warpper dtypeWarpper) | |||
{ | |||
return dtypeWarpper.dtype; | |||
} | |||
} | |||
} |
@@ -99,9 +99,6 @@ namespace Tensorflow.NumPy | |||
NDArray ReadObjectMatrix(BinaryReader reader, Array matrix, int[] shape) | |||
{ | |||
//int data = reader.ReadByte(); | |||
//Console.WriteLine(data); | |||
//Console.WriteLine(reader.ReadByte()); | |||
Stream stream = reader.BaseStream; | |||
Unpickler.registerConstructor("numpy.core.multiarray", "_reconstruct", new MultiArrayConstructor()); | |||
Unpickler.registerConstructor("numpy", "dtype", new DtypeConstructor()); | |||
@@ -28,17 +28,17 @@ namespace Tensorflow.NumPy | |||
//if (type == typeof(String)) | |||
//return ReadStringMatrix(reader, matrix, bytes, type, shape); | |||
NDArray res = ReadObjectMatrix(reader, matrix, shape); | |||
Console.WriteLine("LoadMatrix"); | |||
Console.WriteLine(res.dims[0]); | |||
Console.WriteLine((int)res[0][0]); | |||
Console.WriteLine(res.dims[1]); | |||
//if (type == typeof(Object)) | |||
//{ | |||
//} | |||
//else | |||
return ReadValueMatrix(reader, matrix, bytes, type, shape); | |||
if (type == typeof(Object)) | |||
{ | |||
NDArray res = ReadObjectMatrix(reader, matrix, shape); | |||
// res = res.reconstructedNDArray; | |||
return res.reconstructedArray; | |||
} | |||
else | |||
{ | |||
return ReadValueMatrix(reader, matrix, bytes, type, shape); | |||
} | |||
} | |||
} | |||
@@ -133,7 +133,7 @@ namespace Tensorflow.NumPy | |||
return typeof(Double); | |||
if (typeCode.StartsWith("S")) | |||
return typeof(String); | |||
if (typeCode == "O") | |||
if (typeCode.StartsWith("O")) | |||
return typeof(Object); | |||
throw new NotSupportedException(); | |||
@@ -3,6 +3,7 @@ using System.Collections.Generic; | |||
using System.Diagnostics.CodeAnalysis; | |||
using System.Text; | |||
using Razorvine.Pickle; | |||
using Razorvine.Pickle.Objects; | |||
namespace Tensorflow.NumPy | |||
{ | |||
@@ -17,28 +18,36 @@ namespace Tensorflow.NumPy | |||
{ | |||
public object construct(object[] args) | |||
{ | |||
//Console.WriteLine(args.Length); | |||
//for (int i = 0; i < args.Length; i++) | |||
//{ | |||
// Console.WriteLine(args[i]); | |||
//} | |||
Console.WriteLine("MultiArrayConstructor"); | |||
if (args.Length != 3) | |||
throw new InvalidArgumentError($"Invalid number of arguments in MultiArrayConstructor._reconstruct. Expected three arguments. Given {args.Length} arguments."); | |||
var types = (ClassDictConstructor)args[0]; | |||
if (types.module != "numpy" || types.name != "ndarray") | |||
throw new RuntimeError("_reconstruct: First argument must be a sub-type of ndarray"); | |||
var arg1 = (Object[])args[1]; | |||
var dims = new int[arg1.Length]; | |||
for (var i = 0; i < arg1.Length; i++) | |||
{ | |||
dims[i] = (int)arg1[i]; | |||
} | |||
var shape = new Shape(dims); | |||
var dtype = TF_DataType.DtInvalid; | |||
switch (args[2]) | |||
TF_DataType dtype; | |||
string identifier; | |||
if (args[2].GetType() == typeof(string)) | |||
identifier = (string)args[2]; | |||
else | |||
identifier = Encoding.UTF8.GetString((byte[])args[2]); | |||
switch (identifier) | |||
{ | |||
case "b": dtype = TF_DataType.DtUint8Ref; break; | |||
default: throw new NotImplementedException("cannot parse" + args[2]); | |||
case "u": dtype = np.uint32; break; | |||
case "c": dtype = np.complex_; break; | |||
case "f": dtype = np.float32; break; | |||
case "b": dtype = np.@bool; break; | |||
default: throw new NotImplementedException($"Unsupported data type: {args[2]}"); | |||
} | |||
return new NDArray(new Shape(dims), dtype); | |||
return new NDArray(shape, dtype); | |||
} | |||
} | |||
} |
@@ -1,4 +1,7 @@ | |||
using System; | |||
using Newtonsoft.Json.Linq; | |||
using Serilog.Debugging; | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
@@ -6,14 +9,100 @@ namespace Tensorflow.NumPy | |||
{ | |||
public partial class NDArray | |||
{ | |||
public NDArray reconstructedNDArray { get; set; } | |||
public Array reconstructedArray { get; set; } | |||
public void __setstate__(object[] args) | |||
{ | |||
Console.WriteLine("NDArray __setstate__"); | |||
Console.WriteLine(args.Length); | |||
for (int i = 0; i < args.Length; i++) | |||
if (args.Length != 5) | |||
throw new InvalidArgumentError($"Invalid number of arguments in NDArray.__setstate__. Expected five arguments. Given {args.Length} arguments."); | |||
var version = (int)args[0]; // version | |||
var arg1 = (Object[])args[1]; | |||
var dims = new int[arg1.Length]; | |||
for (var i = 0; i < arg1.Length; i++) | |||
{ | |||
dims[i] = (int)arg1[i]; | |||
} | |||
var _ShapeLike = new Shape(dims); // shape | |||
TF_DataType _DType_co = (TF_DataType_Warpper)args[2]; // DType | |||
var F_continuous = (bool)args[3]; // F-continuous | |||
if (F_continuous) | |||
throw new InvalidArgumentError("Fortran Continuous memory layout is not supported. Please use C-continuous layout or check the data format."); | |||
var data = args[4]; // Data | |||
/* | |||
* If we ever need another pickle format, increment the version | |||
* number. But we should still be able to handle the old versions. | |||
*/ | |||
if (version < 0 || version > 4) | |||
throw new ValueError($"can't handle version {version} of numpy.dtype pickle"); | |||
// TODO: Implement the missing details and checks from the official Numpy C code here. | |||
// https://github.com/numpy/numpy/blob/2f0bd6e86a77e4401d0384d9a75edf9470c5deb6/numpy/core/src/multiarray/descriptor.c#L2761 | |||
if (data.GetType() == typeof(ArrayList)) | |||
{ | |||
SetState((ArrayList)data); | |||
} | |||
else | |||
throw new NotImplementedException(""); | |||
} | |||
private void SetState(ArrayList arrayList) | |||
{ | |||
int ndim = 1; | |||
var subArrayList = arrayList; | |||
while (subArrayList.Count > 0 && subArrayList[0] != null && subArrayList[0].GetType() == typeof(ArrayList)) | |||
{ | |||
subArrayList = (ArrayList)subArrayList[0]; | |||
ndim += 1; | |||
} | |||
var type = subArrayList[0].GetType(); | |||
if (type == typeof(int)) | |||
{ | |||
Console.WriteLine(args[i]); | |||
if (ndim == 1) | |||
{ | |||
int[] list = (int[])arrayList.ToArray(typeof(int)); | |||
Shape shape = new Shape(new int[] { arrayList.Count }); | |||
reconstructedArray = list; | |||
reconstructedNDArray = new NDArray(list, shape); | |||
//SetData(new[] { new Slice() }, new NDArray(list, shape)); | |||
//set_shape(shape); | |||
} | |||
if (ndim == 2) | |||
{ | |||
int secondDim = 0; | |||
foreach (ArrayList subArray in arrayList) | |||
{ | |||
secondDim = subArray.Count > secondDim ? subArray.Count : secondDim; | |||
} | |||
int[,] list = new int[arrayList.Count, secondDim]; | |||
for (int i = 0; i < arrayList.Count; i++) | |||
{ | |||
var subArray = (ArrayList?)arrayList[i]; | |||
if (subArray == null) | |||
throw new NullReferenceException(""); | |||
for (int j = 0; j < subArray.Count; j++) | |||
{ | |||
var element = subArray[j]; | |||
if (element == null) | |||
throw new NoNullAllowedException("the element of ArrayList cannot be null."); | |||
list[i,j] = (int) element; | |||
} | |||
} | |||
Shape shape = new Shape(new int[] { arrayList.Count, secondDim }); | |||
reconstructedArray = list; | |||
reconstructedNDArray = new NDArray(list, shape); | |||
//SetData(new[] { new Slice() }, new NDArray(list, shape)); | |||
//set_shape(shape); | |||
} | |||
if (ndim > 2) | |||
throw new NotImplementedException("can't handle ArrayList with more than two dimensions."); | |||
} | |||
else | |||
throw new NotImplementedException(""); | |||
} | |||
} | |||
} |
@@ -10,6 +10,7 @@ namespace Tensorflow.NumPy | |||
public unsafe static T Scalar<T>(NDArray nd) where T : unmanaged | |||
=> nd.dtype switch | |||
{ | |||
TF_DataType.TF_BOOL => Scalar<T>(*(bool*)nd.data), | |||
TF_DataType.TF_UINT8 => Scalar<T>(*(byte*)nd.data), | |||
TF_DataType.TF_FLOAT => Scalar<T>(*(float*)nd.data), | |||
TF_DataType.TF_INT32 => Scalar<T>(*(int*)nd.data), | |||
@@ -43,7 +43,9 @@ public partial class np | |||
public static readonly TF_DataType @decimal = TF_DataType.TF_DOUBLE; | |||
public static readonly TF_DataType complex_ = TF_DataType.TF_COMPLEX; | |||
public static readonly TF_DataType complex64 = TF_DataType.TF_COMPLEX64; | |||
public static readonly TF_DataType complex128 = TF_DataType.TF_COMPLEX128; | |||
public static readonly TF_DataType complex128 = TF_DataType.TF_COMPLEX128; | |||
public static readonly TF_DataType @string = TF_DataType.TF_STRING; | |||
public static readonly TF_DataType @object = TF_DataType.TF_VARIANT; | |||
#endregion | |||
public static double nan => double.NaN; | |||
@@ -70,7 +70,7 @@ namespace Tensorflow.Keras.Datasets | |||
public class Imdb | |||
{ | |||
string origin_folder = "https://storage.googleapis.com/tensorflow/tf-keras-datasets/"; | |||
string file_name = "imdb.npz"; | |||
string file_name = "simple.npz"; | |||
string dest_folder = "imdb"; | |||
/// <summary> | |||
/// Loads the [IMDB dataset](https://ai.stanford.edu/~amaas/data/sentiment/). | |||
@@ -128,13 +128,15 @@ namespace Tensorflow.Keras.Datasets | |||
(NDArray, NDArray) LoadX(byte[] bytes) | |||
{ | |||
var y = np.Load_Npz<byte[]>(bytes); | |||
return (y["x_train.npy"], y["x_test.npy"]); | |||
var y = np.Load_Npz<int[,]>(bytes); | |||
var x_train = y["x_train.npy"]; | |||
var x_test = y["x_test.npy"]; | |||
return (x_train, x_test); | |||
} | |||
(NDArray, NDArray) LoadY(byte[] bytes) | |||
{ | |||
var y = np.Load_Npz<long[]>(bytes); | |||
var y = np.Load_Npz<int[]>(bytes); | |||
return (y["y_train.npy"], y["y_test.npy"]); | |||
} | |||