Browse Source

Merge branch 'SciSharp:master' into master

pull/1158/head
Dogvane Huang dogvane 2 years ago
parent
commit
960b0ab327
2 changed files with 171 additions and 0 deletions
  1. +14
    -0
      src/TensorFlowNET.Core/APIs/tf.array.cs
  2. +157
    -0
      test/TensorFlowNET.UnitTest/ManagedAPI/ArrayOpsTest.cs

+ 14
- 0
src/TensorFlowNET.Core/APIs/tf.array.cs View File

@@ -174,6 +174,20 @@ namespace Tensorflow
return array_ops.reverse(tensor, axis, name: name); return array_ops.reverse(tensor, axis, name: name);
} }



/// <summary>
/// Reverses specific dimensions of a tensor.
/// </summary>
/// <param name="tensor"></param>
/// <param name="axis"></param>
/// <param name="name"></param>
/// <returns></returns>
public Tensor reverse_v2(Tensor tensor, int[] axis, string name = null)
=> gen_array_ops.reverse_v2(tensor, ops.convert_to_tensor(axis), name: name);

public Tensor reverse_v2(Tensor tensor, Tensor axis, string name = null)
=> gen_array_ops.reverse_v2(tensor, axis, name: name);

/// <summary> /// <summary>
/// Returns the rank of a tensor. /// Returns the rank of a tensor.
/// </summary> /// </summary>


+ 157
- 0
test/TensorFlowNET.UnitTest/ManagedAPI/ArrayOpsTest.cs View File

@@ -4,6 +4,163 @@ using Tensorflow;
using static Tensorflow.Binding; using static Tensorflow.Binding;
using System.Linq; using System.Linq;


namespace TensorFlowNET.UnitTest.ManagedAPI
{
[TestClass]
public class ArrayOpsTest : EagerModeTestBase
{
/// <summary>
/// https://www.tensorflow.org/api_docs/python/tf/slice
/// </summary>
[TestMethod]
public void Slice()
{
// Tests based on example code in TF documentation
var input_array = tf.constant(np.array(new int[] { 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6 }).reshape((3, 2, 3)));
var indices = tf.constant(np.array(new int[] { 0, 2 }));

var r1 = array_ops.slice(input_array, ops.convert_n_to_tensor(new object[] { 1, 0, 0 }), ops.convert_n_to_tensor(new object[] { 1, 1, 3 }));
Assert.AreEqual(new Shape(1, 1, 3), r1.shape);
var r1np = r1.numpy();
Assert.AreEqual(r1np[0, 0, 0], 3);
Assert.AreEqual(r1np[0, 0, 1], 3);
Assert.AreEqual(r1np[0, 0, 2], 3);


var r2 = array_ops.slice(input_array, ops.convert_n_to_tensor(new object[] { 1, 0, 0 }), ops.convert_n_to_tensor(new object[] { 1, 2, 3 }));
Assert.AreEqual(new Shape(1, 2, 3), r2.shape);
var r2np = r2.numpy();
Assert.AreEqual(r2np[0, 0, 0], 3);
Assert.AreEqual(r2np[0, 0, 1], 3);
Assert.AreEqual(r2np[0, 0, 2], 3);
Assert.AreEqual(r2np[0, 1, 0], 4);
Assert.AreEqual(r2np[0, 1, 1], 4);
Assert.AreEqual(r2np[0, 1, 2], 4);

var r3 = array_ops.slice(input_array, ops.convert_n_to_tensor(new object[] { 1, 0, 0 }), ops.convert_n_to_tensor(new object[] { 2, 1, 3 }));
Assert.AreEqual(new Shape(2, 1, 3), r3.shape);
var r3np = r3.numpy();
Assert.AreEqual(r3np[0, 0, 0], 3);
Assert.AreEqual(r3np[0, 0, 1], 3);
Assert.AreEqual(r3np[0, 0, 2], 3);
Assert.AreEqual(r3np[1, 0, 0], 5);
Assert.AreEqual(r3np[1, 0, 1], 5);
Assert.AreEqual(r3np[1, 0, 2], 5);
}

/// <summary>
/// https://www.tensorflow.org/api_docs/python/tf/gather
/// </summary>
[TestMethod]
public void Gather()
{
var input_array = tf.constant(np.arange(12).reshape((3, 4)).astype(np.float32));
var indices = tf.constant(np.array(new int[] { 0, 2 }));

var result = array_ops.gather(input_array, indices);
Assert.AreEqual(new Shape(2, 4), result.shape);
Assert.AreEqual(result.numpy()[0, 0], 0.0f);
Assert.AreEqual(result.numpy()[0, 1], 1.0f);
Assert.AreEqual(result.numpy()[1, 3], 11.0f);

// Tests based on example code in Python doc string for tf.gather()

var p1 = tf.random.normal(new Shape(5, 6, 7, 8));
var i1 = tf.random_uniform(new Shape(10, 11), maxval: 7, dtype: tf.int32);
var r1 = tf.gather(p1, i1, axis: 2);
Assert.AreEqual(new Shape(5, 6, 10, 11, 8), r1.shape);

var p2 = tf.random.normal(new Shape(4, 3));
var i2 = tf.constant(new int[,] { { 0, 2 } });
var r2 = tf.gather(p2, i2, axis: 0);
Assert.AreEqual(new Shape(1, 2, 3), r2.shape);

var r3 = tf.gather(p2, i2, axis: 1);
Assert.AreEqual(new Shape(4, 1, 2), r3.shape);
}

/// <summary>
/// https://www.tensorflow.org/api_docs/python/tf/TensorArray
/// </summary>
[TestMethod]
public void TensorArray()
{
var ta = tf.TensorArray(tf.float32, size: 0, dynamic_size: true, clear_after_read: false);
ta.write(0, 10);
ta.write(1, 20);
ta.write(2, 30);
Assert.AreEqual(ta.read(0).numpy(), 10f);
Assert.AreEqual(ta.read(1).numpy(), 20f);
Assert.AreEqual(ta.read(2).numpy(), 30f);
}

/// <summary>
///
/// </summary>
[TestMethod]
public void Reverse()
{
/*
* python run get test data code:
import tensorflow as tf

data=[[1, 2, 3], [4, 5, 6], [7,8,9]]

data2 = tf.constant(data)

print('test data shaper:', data2.shape)
print('test data:', data2)

axis = [-2,-1,0,1]
for i in axis:
print('')
print('axis:', i)
ax = tf.constant([i])
datar = tf.reverse(data2, ax)
datar2 = array_ops.reverse(data2, ax)
print(datar)
print(datar2)

* */
var inputData = np.array(new int[,] { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } });
var expectedOutput = new[] {
// np.array(new int[,] { { 7, 8, 9 }, { 4, 5, 6 }, { 1, 2, 3 } }),
np.array(new int[,] { { 3, 2, 1 }, { 6, 5, 4 }, { 9, 8, 7 } }),
np.array(new int[,] { { 7, 8, 9 }, { 4, 5, 6 }, { 1, 2, 3 } }),
np.array(new int[,] { { 3, 2, 1 }, { 6, 5, 4 }, { 9, 8, 7 } })
};

var axes = new int [] {
-1,
0,
1 };
for (var i = 0; i < axes.Length; i++)
{
var axis = axes[i];
var expected = tf.constant(expectedOutput[i]).numpy();

var inputTensor = tf.constant(inputData);
var axisTrensor = tf.constant(new[] { axis });

var outputTensor = tf.reverse_v2(inputTensor, axisTrensor);
var npout = outputTensor.numpy();
Assert.IsTrue(Enumerable.SequenceEqual(npout, expected), $"axis:{axis}");

var outputTensor2 = tf.reverse_v2(inputTensor, new[] { axis } );
var npout2 = outputTensor2.numpy();
Assert.IsTrue(Enumerable.SequenceEqual(npout2, expected), $"axis:{axis}");

}
}
}
}
using Microsoft.VisualStudio.TestTools.UnitTesting;
using Tensorflow.NumPy;
using Tensorflow;
using static Tensorflow.Binding;
using System.Linq;

namespace TensorFlowNET.UnitTest.ManagedAPI namespace TensorFlowNET.UnitTest.ManagedAPI
{ {
[TestClass] [TestClass]


Loading…
Cancel
Save