Browse Source

Merge branch 'master' of https://github.com/SciSharp/TensorFlow.NET into rnn-dev

tags/v0.110.0-LSTM-Model
Yaohui Liu 2 years ago
parent
commit
95ee0e8c87
8 changed files with 143 additions and 93 deletions
  1. +13
    -2
      src/TensorFlowNET.Core/APIs/tf.math.cs
  2. +22
    -1
      src/TensorFlowNET.Core/Binding.Util.cs
  3. +1
    -1
      src/TensorFlowNET.Core/Keras/Engine/IModel.cs
  4. +21
    -0
      src/TensorFlowNET.Core/NumPy/Numpy.Math.cs
  5. +12
    -12
      src/TensorFlowNET.Core/Tensors/Tensors.cs
  6. +45
    -75
      src/TensorFlowNET.Keras/Engine/Model.Evaluate.cs
  7. +1
    -1
      src/TensorFlowNET.Keras/Engine/Model.Fit.cs
  8. +28
    -1
      test/TensorFlowNET.UnitTest/Numpy/Math.Test.cs

+ 13
- 2
src/TensorFlowNET.Core/APIs/tf.math.cs View File

@@ -14,6 +14,7 @@
limitations under the License. limitations under the License.
******************************************************************************/ ******************************************************************************/


using Tensorflow.NumPy;
using Tensorflow.Operations; using Tensorflow.Operations;


namespace Tensorflow namespace Tensorflow
@@ -42,7 +43,6 @@ namespace Tensorflow


public Tensor multiply(Tensor x, Tensor y, string name = null) public Tensor multiply(Tensor x, Tensor y, string name = null)
=> math_ops.multiply(x, y, name: name); => math_ops.multiply(x, y, name: name);

public Tensor divide_no_nan(Tensor a, Tensor b, string name = null) public Tensor divide_no_nan(Tensor a, Tensor b, string name = null)
=> math_ops.div_no_nan(a, b); => math_ops.div_no_nan(a, b);


@@ -452,7 +452,18 @@ namespace Tensorflow
/// <returns></returns> /// <returns></returns>
public Tensor multiply<Tx, Ty>(Tx x, Ty y, string name = null) public Tensor multiply<Tx, Ty>(Tx x, Ty y, string name = null)
=> gen_math_ops.mul(ops.convert_to_tensor(x), ops.convert_to_tensor(y), name: name); => gen_math_ops.mul(ops.convert_to_tensor(x), ops.convert_to_tensor(y), name: name);

/// <summary>
/// return scalar product
/// </summary>
/// <typeparam name="Tx"></typeparam>
/// <typeparam name="Ty"></typeparam>
/// <param name="x"></param>
/// <param name="y"></param>
/// <param name="axes"></param>
/// <param name="name"></param>
/// <returns></returns>
public Tensor dot_prod<Tx, Ty>(Tx x, Ty y, NDArray axes, string name = null)
=> math_ops.tensordot(convert_to_tensor(x), convert_to_tensor(y), axes, name: name);
public Tensor negative(Tensor x, string name = null) public Tensor negative(Tensor x, string name = null)
=> gen_math_ops.neg(x, name); => gen_math_ops.neg(x, name);




+ 22
- 1
src/TensorFlowNET.Core/Binding.Util.cs View File

@@ -486,7 +486,28 @@ namespace Tensorflow
throw new NotImplementedException(""); throw new NotImplementedException("");
} }
} }

public static NDArray GetFlattenArray(NDArray x)
{
switch (x.GetDataType())
{
case TF_DataType.TF_FLOAT:
x = x.ToArray<float>();
break;
case TF_DataType.TF_DOUBLE:
x = x.ToArray<double>();
break;
case TF_DataType.TF_INT16:
case TF_DataType.TF_INT32:
x = x.ToArray<int>();
break;
case TF_DataType.TF_INT64:
x = x.ToArray<long>();
break;
default:
break;
}
return x;
}
public static TF_DataType GetDataType(this object data) public static TF_DataType GetDataType(this object data)
{ {
var type = data.GetType(); var type = data.GetType();


+ 1
- 1
src/TensorFlowNET.Core/Keras/Engine/IModel.cs View File

@@ -60,7 +60,7 @@ public interface IModel : ILayer
bool skip_mismatch = false, bool skip_mismatch = false,
object options = null); object options = null);


Dictionary<string, float> evaluate(NDArray x, NDArray y,
Dictionary<string, float> evaluate(Tensor x, Tensor y,
int batch_size = -1, int batch_size = -1,
int verbose = 1, int verbose = 1,
int steps = -1, int steps = -1,


+ 21
- 0
src/TensorFlowNET.Core/NumPy/Numpy.Math.cs View File

@@ -49,9 +49,30 @@ namespace Tensorflow.NumPy
[AutoNumPy] [AutoNumPy]
public static NDArray prod<T>(params T[] array) where T : unmanaged public static NDArray prod<T>(params T[] array) where T : unmanaged
=> new NDArray(tf.reduce_prod(new NDArray(array))); => new NDArray(tf.reduce_prod(new NDArray(array)));
[AutoNumPy]
public static NDArray dot(NDArray x1, NDArray x2, NDArray? axes = null, string? name = null)
{
//if axes mentioned
if (axes != null)
{
return new NDArray(tf.dot_prod(x1, x2, axes, name));
}
if (x1.shape.ndim > 1)
{
x1 = GetFlattenArray(x1);
}
if (x2.shape.ndim > 1)
{
x2 = GetFlattenArray(x2);
}
//if axes not mentioned, default 0,0
return new NDArray(tf.dot_prod(x1, x2, axes: new int[] { 0, 0 }, name));


}
[AutoNumPy] [AutoNumPy]
public static NDArray power(NDArray x, NDArray y) => new NDArray(tf.pow(x, y)); public static NDArray power(NDArray x, NDArray y) => new NDArray(tf.pow(x, y));
[AutoNumPy]
public static NDArray square(NDArray x) => new NDArray(tf.square(x));


[AutoNumPy] [AutoNumPy]
public static NDArray sin(NDArray x) => new NDArray(math_ops.sin(x)); public static NDArray sin(NDArray x) => new NDArray(math_ops.sin(x));


+ 12
- 12
src/TensorFlowNET.Core/Tensors/Tensors.cs View File

@@ -226,62 +226,62 @@ namespace Tensorflow
} }


#region Explicit Conversions #region Explicit Conversions
public unsafe static explicit operator bool(Tensors tensor)
public static explicit operator bool(Tensors tensor)
{ {
return (bool)tensor.Single; return (bool)tensor.Single;
} }


public unsafe static explicit operator sbyte(Tensors tensor)
public static explicit operator sbyte(Tensors tensor)
{ {
return (sbyte)tensor.Single; return (sbyte)tensor.Single;
} }


public unsafe static explicit operator byte(Tensors tensor)
public static explicit operator byte(Tensors tensor)
{ {
return (byte)tensor.Single; return (byte)tensor.Single;
} }


public unsafe static explicit operator ushort(Tensors tensor)
public static explicit operator ushort(Tensors tensor)
{ {
return (ushort)tensor.Single; return (ushort)tensor.Single;
} }


public unsafe static explicit operator short(Tensors tensor)
public static explicit operator short(Tensors tensor)
{ {
return (short)tensor.Single; return (short)tensor.Single;
} }


public unsafe static explicit operator int(Tensors tensor)
public static explicit operator int(Tensors tensor)
{ {
return (int)tensor.Single; return (int)tensor.Single;
} }


public unsafe static explicit operator uint(Tensors tensor)
public static explicit operator uint(Tensors tensor)
{ {
return (uint)tensor.Single; return (uint)tensor.Single;
} }


public unsafe static explicit operator long(Tensors tensor)
public static explicit operator long(Tensors tensor)
{ {
return (long)tensor.Single; return (long)tensor.Single;
} }


public unsafe static explicit operator ulong(Tensors tensor)
public static explicit operator ulong(Tensors tensor)
{ {
return (ulong)tensor.Single; return (ulong)tensor.Single;
} }


public unsafe static explicit operator float(Tensors tensor)
public static explicit operator float(Tensors tensor)
{ {
return (byte)tensor.Single; return (byte)tensor.Single;
} }


public unsafe static explicit operator double(Tensors tensor)
public static explicit operator double(Tensors tensor)
{ {
return (double)tensor.Single; return (double)tensor.Single;
} }


public unsafe static explicit operator string(Tensors tensor)
public static explicit operator string(Tensors tensor)
{ {
return (string)tensor.Single; return (string)tensor.Single;
} }


+ 45
- 75
src/TensorFlowNET.Keras/Engine/Model.Evaluate.cs View File

@@ -1,14 +1,14 @@
using Tensorflow.NumPy;
using System; using System;
using System.Collections.Generic; using System.Collections.Generic;
using System.Linq; using System.Linq;
using Tensorflow;
using Tensorflow.Keras.ArgsDefinition; using Tensorflow.Keras.ArgsDefinition;
using Tensorflow.Keras.Callbacks;
using Tensorflow.Keras.Engine.DataAdapters; using Tensorflow.Keras.Engine.DataAdapters;
using static Tensorflow.Binding;
using Tensorflow.Keras.Layers; using Tensorflow.Keras.Layers;
using Tensorflow.Keras.Utils; using Tensorflow.Keras.Utils;
using Tensorflow;
using Tensorflow.Keras.Callbacks;
using Tensorflow.NumPy;
using static Tensorflow.Binding;


namespace Tensorflow.Keras.Engine namespace Tensorflow.Keras.Engine
{ {
@@ -27,7 +27,7 @@ namespace Tensorflow.Keras.Engine
/// <param name="use_multiprocessing"></param> /// <param name="use_multiprocessing"></param>
/// <param name="return_dict"></param> /// <param name="return_dict"></param>
/// <param name="is_val"></param> /// <param name="is_val"></param>
public Dictionary<string, float> evaluate(NDArray x, NDArray y,
public Dictionary<string, float> evaluate(Tensor x, Tensor y,
int batch_size = -1, int batch_size = -1,
int verbose = 1, int verbose = 1,
int steps = -1, int steps = -1,
@@ -64,34 +64,11 @@ namespace Tensorflow.Keras.Engine
Verbose = verbose, Verbose = verbose,
Steps = data_handler.Inferredsteps Steps = data_handler.Inferredsteps
}); });
callbacks.on_test_begin();

//Dictionary<string, float>? logs = null;
var logs = new Dictionary<string, float>();
foreach (var (epoch, iterator) in data_handler.enumerate_epochs())
{
reset_metrics();
// data_handler.catch_stop_iteration();

foreach (var step in data_handler.steps())
{
callbacks.on_test_batch_begin(step);
logs = test_function(data_handler, iterator);
var end_step = step + data_handler.StepIncrement;
if (is_val == false)
callbacks.on_test_batch_end(end_step, logs);
}
}


var results = new Dictionary<string, float>();
foreach (var log in logs)
{
results[log.Key] = log.Value;
}
return results;
return evaluate(data_handler, callbacks, is_val, test_function);
} }


public Dictionary<string, float> evaluate(IEnumerable<Tensor> x, NDArray y, int verbose = 1, bool is_val = false)
public Dictionary<string, float> evaluate(IEnumerable<Tensor> x, Tensor y, int verbose = 1, bool is_val = false)
{ {
var data_handler = new DataHandler(new DataHandlerArgs var data_handler = new DataHandler(new DataHandlerArgs
{ {
@@ -107,34 +84,10 @@ namespace Tensorflow.Keras.Engine
Verbose = verbose, Verbose = verbose,
Steps = data_handler.Inferredsteps Steps = data_handler.Inferredsteps
}); });
callbacks.on_test_begin();


Dictionary<string, float> logs = null;
foreach (var (epoch, iterator) in data_handler.enumerate_epochs())
{
reset_metrics();
callbacks.on_epoch_begin(epoch);
// data_handler.catch_stop_iteration();

foreach (var step in data_handler.steps())
{
callbacks.on_test_batch_begin(step);
logs = test_step_multi_inputs_function(data_handler, iterator);
var end_step = step + data_handler.StepIncrement;
if (is_val == false)
callbacks.on_test_batch_end(end_step, logs);
}
}

var results = new Dictionary<string, float>();
foreach (var log in logs)
{
results[log.Key] = log.Value;
}
return results;
return evaluate(data_handler, callbacks, is_val, test_step_multi_inputs_function);
} }



public Dictionary<string, float> evaluate(IDatasetV2 x, int verbose = 1, bool is_val = false) public Dictionary<string, float> evaluate(IDatasetV2 x, int verbose = 1, bool is_val = false)
{ {
var data_handler = new DataHandler(new DataHandlerArgs var data_handler = new DataHandler(new DataHandlerArgs
@@ -150,9 +103,24 @@ namespace Tensorflow.Keras.Engine
Verbose = verbose, Verbose = verbose,
Steps = data_handler.Inferredsteps Steps = data_handler.Inferredsteps
}); });

return evaluate(data_handler, callbacks, is_val, test_function);
}

/// <summary>
/// Internal bare implementation of evaluate function.
/// </summary>
/// <param name="data_handler">Interations handling objects</param>
/// <param name="callbacks"></param>
/// <param name="test_func">The function to be called on each batch of data.</param>
/// <param name="is_val">Whether it is validation or test.</param>
/// <returns></returns>
Dictionary<string, float> evaluate(DataHandler data_handler, CallbackList callbacks, bool is_val, Func<DataHandler, Tensor[], Dictionary<string, float>> test_func)
{
callbacks.on_test_begin(); callbacks.on_test_begin();


Dictionary<string, float> logs = null;
var results = new Dictionary<string, float>();
var logs = results;
foreach (var (epoch, iterator) in data_handler.enumerate_epochs()) foreach (var (epoch, iterator) in data_handler.enumerate_epochs())
{ {
reset_metrics(); reset_metrics();
@@ -162,45 +130,47 @@ namespace Tensorflow.Keras.Engine
foreach (var step in data_handler.steps()) foreach (var step in data_handler.steps())
{ {
callbacks.on_test_batch_begin(step); callbacks.on_test_batch_begin(step);
logs = test_function(data_handler, iterator);

logs = test_func(data_handler, iterator.next());

tf_with(ops.control_dependencies(Array.Empty<object>()), ctl => _train_counter.assign_add(1));

var end_step = step + data_handler.StepIncrement; var end_step = step + data_handler.StepIncrement;
if (is_val == false)
if (!is_val)
callbacks.on_test_batch_end(end_step, logs); callbacks.on_test_batch_end(end_step, logs);
} }

if (!is_val)
callbacks.on_epoch_end(epoch, logs);
} }


var results = new Dictionary<string, float>();
foreach (var log in logs) foreach (var log in logs)
{ {
results[log.Key] = log.Value; results[log.Key] = log.Value;
} }

return results; return results;
} }


Dictionary<string, float> test_function(DataHandler data_handler, OwnedIterator iterator)
Dictionary<string, float> test_function(DataHandler data_handler, Tensor[] data)
{ {
var data = iterator.next();
var outputs = test_step(data_handler, data[0], data[1]);
tf_with(ops.control_dependencies(new object[0]), ctl => _test_counter.assign_add(1));
var (x, y) = data_handler.DataAdapter.Expand1d(data[0], data[1]);

var y_pred = Apply(x, training: false);
var loss = compiled_loss.Call(y, y_pred);

compiled_metrics.update_state(y, y_pred);

var outputs = metrics.Select(x => (x.Name, x.result())).ToDictionary(x => x.Name, x => (float)x.Item2);
return outputs; return outputs;
} }
Dictionary<string, float> test_step_multi_inputs_function(DataHandler data_handler, OwnedIterator iterator)

Dictionary<string, float> test_step_multi_inputs_function(DataHandler data_handler, Tensor[] data)
{ {
var data = iterator.next();
var x_size = data_handler.DataAdapter.GetDataset().FirstInputTensorCount; var x_size = data_handler.DataAdapter.GetDataset().FirstInputTensorCount;
var outputs = train_step(data_handler, new Tensors(data.Take(x_size).ToArray()), new Tensors(data.Skip(x_size).ToArray())); var outputs = train_step(data_handler, new Tensors(data.Take(x_size).ToArray()), new Tensors(data.Skip(x_size).ToArray()));
tf_with(ops.control_dependencies(new object[0]), ctl => _train_counter.assign_add(1)); tf_with(ops.control_dependencies(new object[0]), ctl => _train_counter.assign_add(1));
return outputs; return outputs;
} }
Dictionary<string, float> test_step(DataHandler data_handler, Tensor x, Tensor y)
{
(x, y) = data_handler.DataAdapter.Expand1d(x, y);
var y_pred = Apply(x, training: false);
var loss = compiled_loss.Call(y, y_pred);

compiled_metrics.update_state(y, y_pred);

return metrics.Select(x => (x.Name, x.result())).ToDictionary(x=>x.Item1, x=>(float)x.Item2);
}
} }
} }

+ 1
- 1
src/TensorFlowNET.Keras/Engine/Model.Fit.cs View File

@@ -266,7 +266,7 @@ namespace Tensorflow.Keras.Engine
{ {
// Because evaluate calls call_test_batch_end, this interferes with our output on the screen // Because evaluate calls call_test_batch_end, this interferes with our output on the screen
// so we need to pass a is_val parameter to stop on_test_batch_end // so we need to pass a is_val parameter to stop on_test_batch_end
var val_logs = evaluate(validation_data.Value.Item1, validation_data.Value.Item2, is_val:true);
var val_logs = evaluate((Tensor)validation_data.Value.Item1, validation_data.Value.Item2, is_val:true);
foreach (var log in val_logs) foreach (var log in val_logs)
{ {
logs["val_" + log.Key] = log.Value; logs["val_" + log.Key] = log.Value;


+ 28
- 1
test/TensorFlowNET.UnitTest/Numpy/Math.Test.cs View File

@@ -65,7 +65,34 @@ namespace TensorFlowNET.UnitTest.NumPy
var y = np.power(x, 3); var y = np.power(x, 3);
Assert.AreEqual(y, new[] { 0, 1, 8, 27, 64, 125 }); Assert.AreEqual(y, new[] { 0, 1, 8, 27, 64, 125 });
} }
[TestMethod]
[TestMethod]
public void square()
{
var x = np.arange(6);
var y = np.square(x);
Assert.AreEqual(y, new[] { 0, 1, 4, 9, 16, 25 });
}
[TestMethod]
public void dotproduct()
{
var x1 = new NDArray(new[] { 1, 2, 3 });
var x2 = new NDArray(new[] { 4, 5, 6 });
double result1 = np.dot(x1, x2);
NDArray y1 = new float[,] {
{ 1.0f, 2.0f, 3.0f },
{ 4.0f, 5.1f,6.0f },
{ 4.0f, 5.1f,6.0f }
};
NDArray y2 = new float[,] {
{ 3.0f, 2.0f, 1.0f },
{ 6.0f, 5.1f, 4.0f },
{ 6.0f, 5.1f, 4.0f }
};
double result2 = np.dot(y1, y2);
Assert.AreEqual(result1, 32);
Assert.AreEqual(Math.Round(result2, 2), 158.02);
}
[TestMethod]
public void maximum() public void maximum()
{ {
var x1 = new NDArray(new[,] { { 1, 2, 3 }, { 4, 5.1, 6 } }); var x1 = new NDArray(new[,] { { 1, 2, 3 }, { 4, 5.1, 6 } });


Loading…
Cancel
Save