@@ -47,10 +47,10 @@ namespace Tensorflow.Clustering | |||
_cluster_centers_updated = cluster_centers_updated; | |||
_cluster_centers_initialized = cluster_centers_initialized; | |||
_num_selected = array_ops.shape(_cluster_centers)[0]; | |||
_num_selected = array_ops.shape(_cluster_centers).slice(0); | |||
_num_remaining = _num_clusters - _num_selected; | |||
_num_data = math_ops.add_n(_inputs.Select(i => array_ops.shape(i)[0]).ToArray()); | |||
_num_data = math_ops.add_n(_inputs.Select(i => array_ops.shape(i).slice(0)).ToArray()); | |||
} | |||
private Tensor _initialize() | |||
@@ -68,7 +68,7 @@ namespace Tensorflow.Clustering | |||
}, | |||
() => | |||
{ | |||
return control_flow_ops.no_op().output[0]; | |||
return control_flow_ops.no_op().output.slice(0); | |||
}); | |||
}); | |||
} | |||
@@ -90,7 +90,7 @@ namespace Tensorflow.Clustering | |||
// Adds some centers and returns the number of centers remaining. | |||
var new_centers = _choose_initial_centers(); | |||
if (_distance_metric == KMeans.COSINE_DISTANCE) | |||
new_centers = nn_impl.l2_normalize(new_centers[0], axis: 1); | |||
new_centers = nn_impl.l2_normalize(new_centers.slice(0), axis: 1); | |||
// If cluster_centers is empty, it doesn't have the right shape for concat. | |||
var all_centers = control_flow_ops.cond(math_ops.equal(_num_selected, 0), | |||
@@ -99,12 +99,12 @@ namespace Tensorflow.Clustering | |||
var a = state_ops.assign(_cluster_centers, all_centers, validate_shape: false); | |||
return _num_clusters - array_ops.shape(a)[0]; | |||
return _num_clusters - array_ops.shape(a).slice(0); | |||
} | |||
private Tensor _choose_initial_centers() | |||
{ | |||
return _greedy_batch_sampler()[0]; | |||
return _greedy_batch_sampler().slice(0); | |||
} | |||
private Tensor _greedy_batch_sampler() | |||
@@ -156,7 +156,7 @@ namespace Tensorflow.Gradients | |||
// For axis 0 gathers, build an appropriately shaped IndexedSlices. | |||
if((int)axis_static == 0) | |||
{ | |||
var params_tail_shape = params_shape[new NumSharp.Slice(start:1)]; | |||
var params_tail_shape = params_shape.slice(new NumSharp.Slice(start:1)); | |||
var values_shape = array_ops.concat(new[] { indices_size, params_tail_shape }, 0); | |||
var values = array_ops.reshape(grad, values_shape); | |||
indices = array_ops.reshape(indices, indices_size); | |||
@@ -105,16 +105,16 @@ namespace Tensorflow | |||
var has_out_grads = true; | |||
if (has_out_grads && !stop_ops.Contains(op)) | |||
{ | |||
// A grad_fn must be defined, either as a function or as None | |||
// for ops that do not have gradients. | |||
var grad_fn = ops.get_gradient_function(op); | |||
if (is_func_call) | |||
{ | |||
} | |||
else | |||
{ | |||
// A grad_fn must be defined, either as a function or as None | |||
// for ops that do not have gradients. | |||
var grad_fn = ops.get_gradient_function(op); | |||
foreach (var (i, out_grad) in enumerate(out_grads)) | |||
{ | |||
if (out_grad == null) | |||
@@ -322,7 +322,7 @@ namespace Tensorflow | |||
else | |||
{ | |||
used = "add_n"; | |||
out_grads[i] = new List<Tensor> { _MultiDeviceAddN(out_grad.ToArray(), gradient_uid) }; | |||
return_grads[i] = _MultiDeviceAddN(out_grad.ToArray(), gradient_uid); | |||
} | |||
} | |||
else | |||
@@ -200,7 +200,7 @@ namespace Tensorflow.Gradients | |||
var in_lastdim = array_ops.gather(math_ops.cast(in_shape, TF_DataType.TF_INT64), | |||
array_ops.size(in_shape) - 1); | |||
var outerdim = array_ops.shape(ind_2d)[0]; | |||
var outerdim = array_ops.shape(ind_2d).slice(0); | |||
// Compute linear indices(flattened to 1D). | |||
var cast1 = math_ops.cast(outerdim, TF_DataType.TF_INT64); | |||
@@ -224,116 +224,110 @@ namespace Tensorflow | |||
} | |||
} | |||
public Tensor this[Slice slice] | |||
public Tensor slice(Slice slice) | |||
{ | |||
get | |||
{ | |||
var slice_spec = new int[] { slice.Start.Value }; | |||
var begin = new List<int>(); | |||
var end = new List<int>(); | |||
var strides = new List<int>(); | |||
var slice_spec = new int[] { slice.Start.Value }; | |||
var begin = new List<int>(); | |||
var end = new List<int>(); | |||
var strides = new List<int>(); | |||
var index = 0; | |||
var (new_axis_mask, shrink_axis_mask) = (0, 0); | |||
var (begin_mask, end_mask) = (0, 0); | |||
var ellipsis_mask = 0; | |||
var index = 0; | |||
var (new_axis_mask, shrink_axis_mask) = (0, 0); | |||
var (begin_mask, end_mask) = (0, 0); | |||
var ellipsis_mask = 0; | |||
foreach (var s in slice_spec) | |||
foreach (var s in slice_spec) | |||
{ | |||
begin.Add(s); | |||
if (slice.Stop.HasValue) | |||
{ | |||
begin.Add(s); | |||
if(slice.Stop.HasValue) | |||
{ | |||
end.Add(slice.Stop.Value); | |||
} | |||
else | |||
{ | |||
end.Add(0); | |||
end_mask |= (1 << index); | |||
} | |||
strides.Add(slice.Step); | |||
index += 1; | |||
end.Add(slice.Stop.Value); | |||
} | |||
return with(ops.name_scope(null, "strided_slice", new { begin, end, strides }), scope => | |||
else | |||
{ | |||
string name = scope; | |||
if (begin != null) | |||
{ | |||
var (packed_begin, packed_end, packed_strides) = | |||
(array_ops.stack(begin.ToArray()), | |||
array_ops.stack(end.ToArray()), | |||
array_ops.stack(strides.ToArray())); | |||
return gen_array_ops.strided_slice( | |||
this, | |||
packed_begin, | |||
packed_end, | |||
packed_strides, | |||
begin_mask: begin_mask, | |||
end_mask: end_mask, | |||
shrink_axis_mask: shrink_axis_mask, | |||
new_axis_mask: new_axis_mask, | |||
ellipsis_mask: ellipsis_mask, | |||
name: name); | |||
} | |||
throw new NotImplementedException(""); | |||
}); | |||
end.Add(0); | |||
end_mask |= (1 << index); | |||
} | |||
strides.Add(slice.Step); | |||
index += 1; | |||
} | |||
return with(ops.name_scope(null, "strided_slice", new { begin, end, strides }), scope => | |||
{ | |||
string name = scope; | |||
if (begin != null) | |||
{ | |||
var (packed_begin, packed_end, packed_strides) = | |||
(array_ops.stack(begin.ToArray()), | |||
array_ops.stack(end.ToArray()), | |||
array_ops.stack(strides.ToArray())); | |||
return gen_array_ops.strided_slice( | |||
this, | |||
packed_begin, | |||
packed_end, | |||
packed_strides, | |||
begin_mask: begin_mask, | |||
end_mask: end_mask, | |||
shrink_axis_mask: shrink_axis_mask, | |||
new_axis_mask: new_axis_mask, | |||
ellipsis_mask: ellipsis_mask, | |||
name: name); | |||
} | |||
throw new NotImplementedException(""); | |||
}); | |||
} | |||
public Tensor this[int start] | |||
public Tensor slice(int start) | |||
{ | |||
get | |||
{ | |||
var slice_spec = new int[] { start }; | |||
var begin = new List<int>(); | |||
var end = new List<int>(); | |||
var strides = new List<int>(); | |||
var slice_spec = new int[] { start }; | |||
var begin = new List<int>(); | |||
var end = new List<int>(); | |||
var strides = new List<int>(); | |||
var index = 0; | |||
var (new_axis_mask, shrink_axis_mask) = (0, 0); | |||
var (begin_mask, end_mask) = (0, 0); | |||
var ellipsis_mask = 0; | |||
var index = 0; | |||
var (new_axis_mask, shrink_axis_mask) = (0, 0); | |||
var (begin_mask, end_mask) = (0, 0); | |||
var ellipsis_mask = 0; | |||
foreach (var s in slice_spec) | |||
{ | |||
begin.Add(s); | |||
end.Add(s + 1); | |||
strides.Add(1); | |||
shrink_axis_mask |= (1 << index); | |||
index += 1; | |||
} | |||
foreach (var s in slice_spec) | |||
return with(ops.name_scope(null, "strided_slice", new { begin, end, strides }), scope => | |||
{ | |||
string name = scope; | |||
if (begin != null) | |||
{ | |||
begin.Add(s); | |||
end.Add(s + 1); | |||
strides.Add(1); | |||
shrink_axis_mask |= (1 << index); | |||
index += 1; | |||
var (packed_begin, packed_end, packed_strides) = | |||
(array_ops.stack(begin.ToArray()), | |||
array_ops.stack(end.ToArray()), | |||
array_ops.stack(strides.ToArray())); | |||
return gen_array_ops.strided_slice( | |||
this, | |||
packed_begin, | |||
packed_end, | |||
packed_strides, | |||
begin_mask: begin_mask, | |||
end_mask: end_mask, | |||
shrink_axis_mask: shrink_axis_mask, | |||
new_axis_mask: new_axis_mask, | |||
ellipsis_mask: ellipsis_mask, | |||
name: name); | |||
} | |||
return with(ops.name_scope(null, "strided_slice", new { begin, end, strides }), scope => | |||
{ | |||
string name = scope; | |||
if (begin != null) | |||
{ | |||
var (packed_begin, packed_end, packed_strides) = | |||
(array_ops.stack(begin.ToArray()), | |||
array_ops.stack(end.ToArray()), | |||
array_ops.stack(strides.ToArray())); | |||
return gen_array_ops.strided_slice( | |||
this, | |||
packed_begin, | |||
packed_end, | |||
packed_strides, | |||
begin_mask: begin_mask, | |||
end_mask: end_mask, | |||
shrink_axis_mask: shrink_axis_mask, | |||
new_axis_mask: new_axis_mask, | |||
ellipsis_mask: ellipsis_mask, | |||
name: name); | |||
} | |||
throw new NotImplementedException(""); | |||
}); | |||
} | |||
throw new NotImplementedException(""); | |||
}); | |||
} | |||
public override string ToString() | |||
@@ -16,7 +16,7 @@ namespace Tensorflow.Train | |||
float _beta1; | |||
float _beta2; | |||
float _epsilon; | |||
Tensor _lr_t, _beta1_t, _beta2_t, _epsilon_t; | |||
Tensor _beta1_t, _beta2_t, _epsilon_t; | |||
public AdamOptimizer(float learning_rate, float beta1 = 0.9f, float beta2 = 0.999f, float epsilon = 1e-8f, bool use_locking = false, string name = "Adam") | |||
: base(learning_rate, use_locking, name) | |||
@@ -34,6 +34,25 @@ namespace Tensorflow.Train | |||
}); | |||
} | |||
public override Operation _apply_dense(Tensor grad, RefVariable var) | |||
{ | |||
var m = get_slot(var, "m"); | |||
var v = get_slot(var, "v"); | |||
var (beta1_power, beta2_power) = _get_beta_accumulators(); | |||
return gen_training_ops.apply_adam( | |||
var, | |||
m, | |||
v, | |||
math_ops.cast(beta1_power, var.dtype.as_base_dtype()), | |||
math_ops.cast(beta2_power, var.dtype.as_base_dtype()), | |||
math_ops.cast(_lr_t, var.dtype.as_base_dtype()), | |||
math_ops.cast(_beta1_t, var.dtype.as_base_dtype()), | |||
math_ops.cast(_beta2_t, var.dtype.as_base_dtype()), | |||
math_ops.cast(_epsilon_t, var.dtype.as_base_dtype()), | |||
grad, | |||
use_locking: _use_locking).op; | |||
} | |||
private Operation _apply_sparse_shared(Tensor grad, RefVariable var, Tensor indices, Func<RefVariable, Tensor, Tensor, Tensor> scatter_add) | |||
{ | |||
var (beta1_power_v, beta2_power_v) = _get_beta_accumulators(); | |||
@@ -272,7 +272,7 @@ namespace Tensorflow | |||
public virtual (Tensor, Tensor) _deduplicate_indexed_slices(Tensor values, Tensor indices) | |||
{ | |||
var (unique_indices, new_index_positions) = array_ops.unique(indices); | |||
var shape = array_ops.shape(unique_indices)[0]; | |||
var shape = array_ops.shape(unique_indices).slice(0); | |||
var summed_values = math_ops.unsorted_segment_sum(values, new_index_positions, shape); | |||
return (summed_values, unique_indices); | |||
} | |||
@@ -8,6 +8,29 @@ namespace Tensorflow | |||
{ | |||
public static OpDefLibrary _op_def_lib = new OpDefLibrary(); | |||
public static Tensor apply_adam(RefVariable var, RefVariable m, RefVariable v, Tensor beta1_power, Tensor beta2_power, | |||
Tensor lr, Tensor beta1, Tensor beta2, Tensor epsilon, Tensor grad, | |||
bool use_locking = false, bool use_nesterov = false, string name = null) | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("ApplyAdam", name, new | |||
{ | |||
var, | |||
m, | |||
v, | |||
beta1_power, | |||
beta2_power, | |||
lr, | |||
beta1, | |||
beta2, | |||
epsilon, | |||
grad, | |||
use_locking, | |||
use_nesterov | |||
}); | |||
return _op.outputs[0]; | |||
} | |||
public static Tensor apply_gradient_descent(RefVariable var, Tensor alpha, Tensor delta, bool use_locking = false, string name = null) | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("ApplyGradientDescent", name, new | |||