|
@@ -31,7 +31,7 @@ namespace Tensorflow.Keras.Datasets |
|
|
/// <param name="oov_char"></param> |
|
|
/// <param name="oov_char"></param> |
|
|
/// <param name="index_from"></param> |
|
|
/// <param name="index_from"></param> |
|
|
/// <returns></returns> |
|
|
/// <returns></returns> |
|
|
public DatasetPass load_data(string path = "imdb.npz", |
|
|
|
|
|
|
|
|
public DatasetPass load_data(string? path = "imdb.npz", |
|
|
int num_words = -1, |
|
|
int num_words = -1, |
|
|
int skip_top = 0, |
|
|
int skip_top = 0, |
|
|
int maxlen = -1, |
|
|
int maxlen = -1, |
|
@@ -42,7 +42,7 @@ namespace Tensorflow.Keras.Datasets |
|
|
{ |
|
|
{ |
|
|
if (maxlen == -1) throw new InvalidArgumentError("maxlen must be assigned."); |
|
|
if (maxlen == -1) throw new InvalidArgumentError("maxlen must be assigned."); |
|
|
|
|
|
|
|
|
var dst = Download(); |
|
|
|
|
|
|
|
|
var dst = path ?? Download(); |
|
|
|
|
|
|
|
|
var lines = File.ReadAllLines(Path.Combine(dst, "imdb_train.txt")); |
|
|
var lines = File.ReadAllLines(Path.Combine(dst, "imdb_train.txt")); |
|
|
var x_train_string = new string[lines.Length]; |
|
|
var x_train_string = new string[lines.Length]; |
|
@@ -55,7 +55,7 @@ namespace Tensorflow.Keras.Datasets |
|
|
|
|
|
|
|
|
var x_train = keras.preprocessing.sequence.pad_sequences(PraseData(x_train_string), maxlen: maxlen); |
|
|
var x_train = keras.preprocessing.sequence.pad_sequences(PraseData(x_train_string), maxlen: maxlen); |
|
|
|
|
|
|
|
|
File.ReadAllLines(Path.Combine(dst, "imdb_test.txt")); |
|
|
|
|
|
|
|
|
lines = File.ReadAllLines(Path.Combine(dst, "imdb_test.txt")); |
|
|
var x_test_string = new string[lines.Length]; |
|
|
var x_test_string = new string[lines.Length]; |
|
|
var y_test = np.zeros(new int[] { lines.Length }, np.int64); |
|
|
var y_test = np.zeros(new int[] { lines.Length }, np.int64); |
|
|
for (int i = 0; i < lines.Length; i++) |
|
|
for (int i = 0; i < lines.Length; i++) |
|
|