@@ -73,6 +73,7 @@ Read the docs & book [The Definitive Guide to Tensorflow.NET](https://tensorflow | |||||
* [Image Recognition](test/TensorFlowNET.Examples/ImageRecognition.cs) | * [Image Recognition](test/TensorFlowNET.Examples/ImageRecognition.cs) | ||||
* [Linear Regression](test/TensorFlowNET.Examples/LinearRegression.cs) | * [Linear Regression](test/TensorFlowNET.Examples/LinearRegression.cs) | ||||
* [Logistic Regression](test/TensorFlowNET.Examples/LogisticRegression.cs) | * [Logistic Regression](test/TensorFlowNET.Examples/LogisticRegression.cs) | ||||
* [Nearest Neighbor](test/TensorFlowNET.Examples/NearestNeighbor.cs) | |||||
* [Text Classification](test/TensorFlowNET.Examples/TextClassificationWithMovieReviews.cs) | * [Text Classification](test/TensorFlowNET.Examples/TextClassificationWithMovieReviews.cs) | ||||
* [CNN Text Classification](test/TensorFlowNET.Examples/CnnTextClassification.cs) | * [CNN Text Classification](test/TensorFlowNET.Examples/CnnTextClassification.cs) | ||||
* [Naive Bayes Classification](test/TensorFlowNET.Examples/NaiveBayesClassifier.cs) | * [Naive Bayes Classification](test/TensorFlowNET.Examples/NaiveBayesClassifier.cs) | ||||
@@ -0,0 +1,3 @@ | |||||
# Chapter. Nearest Neighbor | |||||
The nearest neighbour algorithm was one of the first algorithms used to solve the travelling salesman problem. In it, the salesman starts at a random city and repeatedly visits the nearest city until all have been visited. It quickly yields a short tour, but usually not the optimal one. |
@@ -27,4 +27,5 @@ Welcome to TensorFlow.NET's documentation! | |||||
EagerMode | EagerMode | ||||
LinearRegression | LinearRegression | ||||
LogisticRegression | LogisticRegression | ||||
NearestNeighbor | |||||
ImageRecognition | ImageRecognition |
@@ -6,9 +6,18 @@ namespace Tensorflow | |||||
{ | { | ||||
public static partial class tf | public static partial class tf | ||||
{ | { | ||||
public static Tensor abs(Tensor x, string name = null) | |||||
=> math_ops.abs(x, name); | |||||
public static Tensor add(Tensor a, Tensor b) | public static Tensor add(Tensor a, Tensor b) | ||||
=> gen_math_ops.add(a, b); | => gen_math_ops.add(a, b); | ||||
public static Tensor arg_max(Tensor input, int dimension, TF_DataType output_type = TF_DataType.TF_INT64, string name = null) | |||||
=> gen_math_ops.arg_max(input, dimension, output_type: output_type, name: name); | |||||
public static Tensor arg_min(Tensor input, int dimension, TF_DataType output_type = TF_DataType.TF_INT64, string name = null) | |||||
=> gen_math_ops.arg_min(input, dimension, output_type: output_type, name: name); | |||||
public static Tensor sub(Tensor a, Tensor b) | public static Tensor sub(Tensor a, Tensor b) | ||||
=> gen_math_ops.sub(a, b); | => gen_math_ops.sub(a, b); | ||||
@@ -27,6 +36,9 @@ namespace Tensorflow | |||||
public static Tensor multiply(Tensor x, Tensor y) | public static Tensor multiply(Tensor x, Tensor y) | ||||
=> gen_math_ops.mul(x, y); | => gen_math_ops.mul(x, y); | ||||
public static Tensor negative(Tensor x, string name = null) | |||||
=> gen_math_ops.neg(x, name); | |||||
public static Tensor divide<T>(Tensor x, T[] y, string name = null) where T : struct | public static Tensor divide<T>(Tensor x, T[] y, string name = null) where T : struct | ||||
=> x / ops.convert_to_tensor(y, dtype: x.dtype.as_base_dtype(), name: "y"); | => x / ops.convert_to_tensor(y, dtype: x.dtype.as_base_dtype(), name: "y"); | ||||
@@ -355,7 +355,7 @@ namespace Tensorflow | |||||
return _collections.Keys.Where(x => !x.StartsWith("__")).ToArray(); | return _collections.Keys.Where(x => !x.StartsWith("__")).ToArray(); | ||||
} | } | ||||
public object get_collection(string name, string scope = "") | |||||
public object get_collection(string name, string scope = null) | |||||
{ | { | ||||
return _collections.ContainsKey(name) ? _collections[name] : null; | return _collections.ContainsKey(name) ? _collections[name] : null; | ||||
} | } | ||||
@@ -9,6 +9,30 @@ namespace Tensorflow | |||||
public static class gen_math_ops | public static class gen_math_ops | ||||
{ | { | ||||
public static OpDefLibrary _op_def_lib = new OpDefLibrary(); | public static OpDefLibrary _op_def_lib = new OpDefLibrary(); | ||||
/// <summary> | |||||
/// Returns the index with the largest value across dimensions of a tensor. | |||||
/// </summary> | |||||
/// <param name="input"></param> | |||||
/// <param name="dimension"></param> | |||||
/// <param name="output_type"></param> | |||||
/// <param name="name"></param> | |||||
/// <returns></returns> | |||||
public static Tensor arg_max(Tensor input, int dimension, TF_DataType output_type = TF_DataType.TF_INT64, string name = null) | |||||
=> _op_def_lib._apply_op_helper("ArgMax", name, args: new { input, dimension, output_type }).outputs[0]; | |||||
/// <summary> | |||||
/// Returns the index with the smallest value across dimensions of a tensor. | |||||
/// </summary> | |||||
/// <param name="input"></param> | |||||
/// <param name="dimension"></param> | |||||
/// <param name="output_type"></param> | |||||
/// <param name="name"></param> | |||||
/// <returns></returns> | |||||
public static Tensor arg_min(Tensor input, int dimension, TF_DataType output_type= TF_DataType.TF_INT64, string name= null) | |||||
=>_op_def_lib._apply_op_helper("ArgMin", name, args: new { input, dimension, output_type }).outputs[0]; | |||||
/// <summary> | /// <summary> | ||||
/// Computes the mean of elements across dimensions of a tensor. | /// Computes the mean of elements across dimensions of a tensor. | ||||
/// Reduces `input` along the dimensions given in `axis`. Unless /// `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in /// `axis`. If `keep_dims` is true, the reduced dimensions are retained with length 1. | /// Reduces `input` along the dimensions given in `axis`. Unless /// `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in /// `axis`. If `keep_dims` is true, the reduced dimensions are retained with length 1. | ||||
@@ -207,6 +231,13 @@ namespace Tensorflow | |||||
return _op.outputs[0]; | return _op.outputs[0]; | ||||
} | } | ||||
public static Tensor _abs(Tensor x, string name = null) | |||||
{ | |||||
var _op = _op_def_lib._apply_op_helper("Abs", name, new { x }); | |||||
return _op.outputs[0]; | |||||
} | |||||
public static Tensor _max<Tx, Ty>(Tx input, Ty axis, bool keep_dims=false, string name = null) | public static Tensor _max<Tx, Ty>(Tx input, Ty axis, bool keep_dims=false, string name = null) | ||||
{ | { | ||||
var _op = _op_def_lib._apply_op_helper("Max", name, new { input, reduction_indices = axis, keep_dims }); | var _op = _op_def_lib._apply_op_helper("Max", name, new { input, reduction_indices = axis, keep_dims }); | ||||
@@ -249,20 +280,5 @@ namespace Tensorflow | |||||
return _op.outputs[0]; | return _op.outputs[0]; | ||||
} | } | ||||
/// <summary> | |||||
/// Returns the index with the largest value across dimensions of a tensor. | |||||
/// </summary> | |||||
/// <param name="input"></param> | |||||
/// <param name="dimension"></param> | |||||
/// <param name="output_type"></param> | |||||
/// <param name="name"></param> | |||||
/// <returns></returns> | |||||
public static Tensor arg_max(Tensor input, int dimension, TF_DataType output_type = TF_DataType.TF_INT64, string name = null) | |||||
{ | |||||
var _op = _op_def_lib._apply_op_helper("ArgMax", name, new { input, dimension, output_type }); | |||||
return _op.outputs[0]; | |||||
} | |||||
} | } | ||||
} | } |
@@ -6,9 +6,36 @@ using Tensorflow.Framework; | |||||
namespace Tensorflow | namespace Tensorflow | ||||
{ | { | ||||
/// <summary> | |||||
/// python\ops\math_ops.py | |||||
/// </summary> | |||||
public class math_ops : Python | public class math_ops : Python | ||||
{ | { | ||||
public static Tensor add(Tensor x, Tensor y, string name = null) => gen_math_ops.add(x, y, name); | |||||
public static Tensor abs(Tensor x, string name = null) | |||||
{ | |||||
return with(ops.name_scope(name, "Abs", new { x }), scope => | |||||
{ | |||||
x = ops.convert_to_tensor(x, name: "x"); | |||||
if (x.dtype.is_complex()) | |||||
throw new NotImplementedException("math_ops.abs for dtype.is_complex"); | |||||
//return gen_math_ops.complex_abs(x, Tout: x.dtype.real_dtype, name: name); | |||||
return gen_math_ops._abs(x, name: name); | |||||
}); | |||||
} | |||||
public static Tensor add(Tensor x, Tensor y, string name = null) | |||||
=> gen_math_ops.add(x, y, name); | |||||
public static Tensor add(Tensor x, string name = null) | |||||
{ | |||||
return with(ops.name_scope(name, "Abs", new { x }), scope => | |||||
{ | |||||
name = scope; | |||||
x = ops.convert_to_tensor(x, name: "x"); | |||||
return gen_math_ops._abs(x, name: name); | |||||
}); | |||||
} | |||||
public static Tensor cast(Tensor x, TF_DataType dtype = TF_DataType.DtInvalid, string name = null) | public static Tensor cast(Tensor x, TF_DataType dtype = TF_DataType.DtInvalid, string name = null) | ||||
{ | { |
@@ -222,6 +222,12 @@ namespace Tensorflow | |||||
ints[i] = *(int*)(offset + (int)(tensor.itemsize * i)); | ints[i] = *(int*)(offset + (int)(tensor.itemsize * i)); | ||||
nd = np.array(ints).reshape(ndims); | nd = np.array(ints).reshape(ndims); | ||||
break; | break; | ||||
case TF_DataType.TF_INT64: | |||||
var longs = new long[tensor.size]; | |||||
for (ulong i = 0; i < tensor.size; i++) | |||||
longs[i] = *(long*)(offset + (int)(tensor.itemsize * i)); | |||||
nd = np.array(longs).reshape(ndims); | |||||
break; | |||||
case TF_DataType.TF_FLOAT: | case TF_DataType.TF_FLOAT: | ||||
var floats = new float[tensor.size]; | var floats = new float[tensor.size]; | ||||
for (ulong i = 0; i < tensor.size; i++) | for (ulong i = 0; i < tensor.size; i++) | ||||
@@ -65,6 +65,9 @@ namespace Tensorflow | |||||
case "Int32": | case "Int32": | ||||
full_values.Add(value.Data<int>(0)); | full_values.Add(value.Data<int>(0)); | ||||
break; | break; | ||||
case "Int64": | |||||
full_values.Add(value.Data<long>(0)); | |||||
break; | |||||
case "Single": | case "Single": | ||||
full_values.Add(value.Data<float>(0)); | full_values.Add(value.Data<float>(0)); | ||||
break; | break; | ||||
@@ -78,7 +81,7 @@ namespace Tensorflow | |||||
} | } | ||||
else | else | ||||
{ | { | ||||
full_values.Add(value[np.arange(1)]); | |||||
full_values.Add(value[np.arange(0, value.shape[0])]); | |||||
} | } | ||||
} | } | ||||
i += 1; | i += 1; | ||||
@@ -4,7 +4,7 @@ | |||||
<TargetFramework>netstandard2.0</TargetFramework> | <TargetFramework>netstandard2.0</TargetFramework> | ||||
<AssemblyName>TensorFlow.NET</AssemblyName> | <AssemblyName>TensorFlow.NET</AssemblyName> | ||||
<RootNamespace>Tensorflow</RootNamespace> | <RootNamespace>Tensorflow</RootNamespace> | ||||
<Version>0.5.0</Version> | |||||
<Version>0.5.1</Version> | |||||
<Authors>Haiping Chen</Authors> | <Authors>Haiping Chen</Authors> | ||||
<Company>SciSharp STACK</Company> | <Company>SciSharp STACK</Company> | ||||
<GeneratePackageOnBuild>true</GeneratePackageOnBuild> | <GeneratePackageOnBuild>true</GeneratePackageOnBuild> | ||||
@@ -16,11 +16,13 @@ | |||||
<PackageTags>TensorFlow, NumSharp, SciSharp, MachineLearning, TensorFlow.NET, C#</PackageTags> | <PackageTags>TensorFlow, NumSharp, SciSharp, MachineLearning, TensorFlow.NET, C#</PackageTags> | ||||
<Description>Google's TensorFlow binding in .NET Standard. | <Description>Google's TensorFlow binding in .NET Standard. | ||||
Docs: https://tensorflownet.readthedocs.io</Description> | Docs: https://tensorflownet.readthedocs.io</Description> | ||||
<AssemblyVersion>0.5.0.0</AssemblyVersion> | |||||
<PackageReleaseNotes>Add Logistic Regression to do MNIST. | |||||
Add a lot of APIs to build neural networks model</PackageReleaseNotes> | |||||
<AssemblyVersion>0.5.1.0</AssemblyVersion> | |||||
<PackageReleaseNotes>Changes since v0.5: | |||||
Added Nearest Neighbor. | |||||
Add a lot of APIs to build neural networks model. | |||||
Bug fix.</PackageReleaseNotes> | |||||
<LangVersion>7.2</LangVersion> | <LangVersion>7.2</LangVersion> | ||||
<FileVersion>0.5.0.0</FileVersion> | |||||
<FileVersion>0.5.1.0</FileVersion> | |||||
</PropertyGroup> | </PropertyGroup> | ||||
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|AnyCPU'"> | <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|AnyCPU'"> | ||||
@@ -44,7 +46,7 @@ Add a lot of APIs to build neural networks model</PackageReleaseNotes> | |||||
<ItemGroup> | <ItemGroup> | ||||
<PackageReference Include="Google.Protobuf" Version="3.7.0" /> | <PackageReference Include="Google.Protobuf" Version="3.7.0" /> | ||||
<PackageReference Include="NumSharp" Version="0.8.1" /> | |||||
<PackageReference Include="NumSharp" Version="0.8.2" /> | |||||
</ItemGroup> | </ItemGroup> | ||||
<ItemGroup> | <ItemGroup> | ||||
@@ -47,11 +47,11 @@ namespace Tensorflow | |||||
/// special tokens filters by prefix. | /// special tokens filters by prefix. | ||||
/// </param> | /// </param> | ||||
/// <returns>A list of `Variable` objects.</returns> | /// <returns>A list of `Variable` objects.</returns> | ||||
public static List<RefVariable> global_variables(string scope = "") | |||||
public static List<RefVariable> global_variables(string scope = null) | |||||
{ | { | ||||
var result = ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES, scope); | var result = ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES, scope); | ||||
return result as List<RefVariable>; | |||||
return result == null ? new List<RefVariable>() : result as List<RefVariable>; | |||||
} | } | ||||
/// <summary> | /// <summary> | ||||
@@ -62,7 +62,10 @@ namespace Tensorflow | |||||
/// <returns>An Op that run the initializers of all the specified variables.</returns> | /// <returns>An Op that run the initializers of all the specified variables.</returns> | ||||
public static Operation variables_initializer(RefVariable[] var_list, string name = "init") | public static Operation variables_initializer(RefVariable[] var_list, string name = "init") | ||||
{ | { | ||||
return control_flow_ops.group(var_list.Select(x => x.initializer).ToArray(), name); | |||||
if (var_list.Length > 0) | |||||
return control_flow_ops.group(var_list.Select(x => x.initializer).ToArray(), name); | |||||
else | |||||
return gen_control_flow_ops.no_op(name: name); | |||||
} | } | ||||
} | } | ||||
} | } |
@@ -41,7 +41,7 @@ namespace Tensorflow | |||||
/// list contains the values in the order under which they were | /// list contains the values in the order under which they were | ||||
/// collected. | /// collected. | ||||
/// </returns> | /// </returns> | ||||
public static object get_collection(string key, string scope = "") | |||||
public static object get_collection(string key, string scope = null) | |||||
{ | { | ||||
return get_default_graph().get_collection(key, scope); | return get_default_graph().get_collection(key, scope); | ||||
} | } | ||||
@@ -12,7 +12,7 @@ namespace TensorFlowNET.Examples | |||||
{ | { | ||||
public class ImageRecognition : Python, IExample | public class ImageRecognition : Python, IExample | ||||
{ | { | ||||
public int Priority => 5; | |||||
public int Priority => 6; | |||||
public bool Enabled => true; | public bool Enabled => true; | ||||
public string Name => "Image Recognition"; | public string Name => "Image Recognition"; | ||||
@@ -98,7 +98,7 @@ namespace TensorFlowNET.Examples | |||||
public void PrepareData() | public void PrepareData() | ||||
{ | { | ||||
mnist = MnistDataSet.read_data_sets("logistic_regression", one_hot: true); | |||||
mnist = MnistDataSet.read_data_sets("mnist", one_hot: true); | |||||
} | } | ||||
public void SaveModel(Session sess) | public void SaveModel(Session sess) | ||||
@@ -0,0 +1,70 @@ | |||||
using NumSharp.Core; | |||||
using System; | |||||
using System.Collections.Generic; | |||||
using System.Text; | |||||
using Tensorflow; | |||||
using TensorFlowNET.Examples.Utility; | |||||
namespace TensorFlowNET.Examples | |||||
{ | |||||
/// <summary> | |||||
/// A nearest neighbor learning algorithm example | |||||
/// This example is using the MNIST database of handwritten digits | |||||
/// https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/nearest_neighbor.py | |||||
/// </summary> | |||||
public class NearestNeighbor : Python, IExample | |||||
{ | |||||
public int Priority => 5; | |||||
public bool Enabled => true; | |||||
public string Name => "Nearest Neighbor"; | |||||
Datasets mnist; | |||||
NDArray Xtr, Ytr, Xte, Yte; | |||||
public bool Run() | |||||
{ | |||||
// tf Graph Input | |||||
var xtr = tf.placeholder(tf.float32, new TensorShape(-1, 784)); | |||||
var xte = tf.placeholder(tf.float32, new TensorShape(784)); | |||||
// Nearest Neighbor calculation using L1 Distance | |||||
// Calculate L1 Distance | |||||
var distance = tf.reduce_sum(tf.abs(tf.add(xtr, tf.negative(xte))), reduction_indices: 1); | |||||
// Prediction: Get min distance index (Nearest neighbor) | |||||
var pred = tf.arg_min(distance, 0); | |||||
float accuracy = 0f; | |||||
// Initialize the variables (i.e. assign their default value) | |||||
var init = tf.global_variables_initializer(); | |||||
with(tf.Session(), sess => | |||||
{ | |||||
// Run the initializer | |||||
sess.run(init); | |||||
PrepareData(); | |||||
foreach(int i in range(Xte.shape[0])) | |||||
{ | |||||
// Get nearest neighbor | |||||
long nn_index = sess.run(pred, new FeedItem(xtr, Xtr), new FeedItem(xte, Xte[i])); | |||||
// Get nearest neighbor class label and compare it to its true label | |||||
print($"Test {i} Prediction: {np.argmax(Ytr[nn_index])} True Class: {np.argmax(Yte[i] as NDArray)}"); | |||||
// Calculate accuracy | |||||
if (np.argmax(Ytr[nn_index]) == np.argmax(Yte[i] as NDArray)) | |||||
accuracy += 1f/ Xte.shape[0]; | |||||
} | |||||
print($"Accuracy: {accuracy}"); | |||||
}); | |||||
return accuracy > 0.9; | |||||
} | |||||
public void PrepareData() | |||||
{ | |||||
mnist = MnistDataSet.read_data_sets("mnist", one_hot: true); | |||||
// In this example, we limit mnist data | |||||
(Xtr, Ytr) = mnist.train.next_batch(5000); // 5000 for training (nn candidates) | |||||
(Xte, Yte) = mnist.test.next_batch(200); // 200 for testing | |||||
} | |||||
} | |||||
} |
@@ -32,11 +32,11 @@ namespace TensorFlowNET.Examples | |||||
{ | { | ||||
if (example.Enabled) | if (example.Enabled) | ||||
if (example.Run()) | if (example.Run()) | ||||
success.Add($"{example.Priority} {example.Name}"); | |||||
success.Add($"Example {example.Priority}: {example.Name}"); | |||||
else | else | ||||
errors.Add($"{example.Priority} {example.Name}"); | |||||
errors.Add($"Example {example.Priority}: {example.Name}"); | |||||
else | else | ||||
disabled.Add($"{example.Priority} {example.Name}"); | |||||
disabled.Add($"Example {example.Priority}: {example.Name}"); | |||||
} | } | ||||
catch (Exception ex) | catch (Exception ex) | ||||
{ | { | ||||
@@ -46,9 +46,9 @@ namespace TensorFlowNET.Examples | |||||
Console.WriteLine($"{DateTime.UtcNow} Completed {example.Name}", Color.White); | Console.WriteLine($"{DateTime.UtcNow} Completed {example.Name}", Color.White); | ||||
} | } | ||||
success.ForEach(x => Console.WriteLine($"{x} example is OK!", Color.Green)); | |||||
disabled.ForEach(x => Console.WriteLine($"{x} example is Disabled!", Color.Tan)); | |||||
errors.ForEach(x => Console.WriteLine($"{x} example is Failed!", Color.Red)); | |||||
success.ForEach(x => Console.WriteLine($"{x} is OK!", Color.Green)); | |||||
disabled.ForEach(x => Console.WriteLine($"{x} is Disabled!", Color.Tan)); | |||||
errors.ForEach(x => Console.WriteLine($"{x} is Failed!", Color.Red)); | |||||
Console.ReadLine(); | Console.ReadLine(); | ||||
} | } | ||||
@@ -8,7 +8,7 @@ | |||||
<ItemGroup> | <ItemGroup> | ||||
<PackageReference Include="Colorful.Console" Version="1.2.9" /> | <PackageReference Include="Colorful.Console" Version="1.2.9" /> | ||||
<PackageReference Include="Newtonsoft.Json" Version="12.0.1" /> | <PackageReference Include="Newtonsoft.Json" Version="12.0.1" /> | ||||
<PackageReference Include="NumSharp" Version="0.8.1" /> | |||||
<PackageReference Include="NumSharp" Version="0.8.2" /> | |||||
<PackageReference Include="SharpZipLib" Version="1.1.0" /> | <PackageReference Include="SharpZipLib" Version="1.1.0" /> | ||||
</ItemGroup> | </ItemGroup> | ||||
@@ -11,7 +11,7 @@ namespace TensorFlowNET.Examples | |||||
{ | { | ||||
public class TextClassificationWithMovieReviews : Python, IExample | public class TextClassificationWithMovieReviews : Python, IExample | ||||
{ | { | ||||
public int Priority => 6; | |||||
public int Priority => 7; | |||||
public bool Enabled => false; | public bool Enabled => false; | ||||
public string Name => "Movie Reviews"; | public string Name => "Movie Reviews"; | ||||
@@ -19,8 +19,8 @@ | |||||
<PackageReference Include="Microsoft.NET.Test.Sdk" Version="16.0.1" /> | <PackageReference Include="Microsoft.NET.Test.Sdk" Version="16.0.1" /> | ||||
<PackageReference Include="MSTest.TestAdapter" Version="1.4.0" /> | <PackageReference Include="MSTest.TestAdapter" Version="1.4.0" /> | ||||
<PackageReference Include="MSTest.TestFramework" Version="1.4.0" /> | <PackageReference Include="MSTest.TestFramework" Version="1.4.0" /> | ||||
<PackageReference Include="NumSharp" Version="0.8.1" /> | |||||
<PackageReference Include="TensorFlow.NET" Version="0.4.2" /> | |||||
<PackageReference Include="NumSharp" Version="0.8.2" /> | |||||
<PackageReference Include="TensorFlow.NET" Version="0.5.0" /> | |||||
</ItemGroup> | </ItemGroup> | ||||
<ItemGroup> | <ItemGroup> | ||||