Browse Source

Update LogisticRegression.md

tags/v0.9
Evan Wang GitHub 6 years ago
parent
commit
7b92f7563c
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 14 additions and 3 deletions
  1. +14
    -3
      docs/source/LogisticRegression.md

+ 14
- 3
docs/source/LogisticRegression.md View File

@@ -8,12 +8,23 @@ Logistic regression is a statistical analysis method used to predict a data valu


The dependent variable of logistics regression can be two-category or multi-category, but the two-category is more common and easier to explain. So the most common use in practice is the logistics of the two classifications. The dependent variable of logistics regression can be two-category or multi-category, but the two-category is more common and easier to explain. So the most common use in practice is the logistics of the two classifications.


逻辑回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释。所以实际中最常用的就是二分类的物流回归。
逻辑回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释。


The general steps for regression problems are as follows:


Logistics regression corresponds to a hidden status p through the function trumpetp = S(ax+b), then determine the value of the dependent
variable according to the size of p and 1-p.The function S here is the Sigmoid function:
S(t)=1/(1+e^(-t)
By changing t to ax+b, you can get the parameter form of the logistic regression model:
P(x;a,b) = 1 / (1 + e^(-ax+b))


logistic回归通过函数S将ax+b对应到一个隐状态p,p = S(ax+b),然后根据p与1-p的大小决定因变量的值。这里的函数S就是Sigmoid函数
logistic回归通过函数S将ax+b对应到一个隐状态p,p = S(ax+b),然后根据p与1-p的大小决定因变量的值。这里的函数S就是Sigmoid函数:
S(t)=1/(1+e^(-t)
将t换成ax+b,可以得到逻辑回归模型的参数形式:
P(x;a,b) = 1 / (1 + e^(-ax+b))

![image]
通过函数S的作用,我们可以将输出的值限制在区间[0, 1]上,p(x)则可以用来表示概率p(y=1|x),即当一个x发生时,y被分到1那一组的概率。可是,等等,我们上面说y只有两种取值,但是这里却出现了一个区间[0, 1],这是什么鬼??其实在真实情况下,我们最终得到的y的值是在[0, 1]这个区间上的一个数,然后我们可以选择一个阈值,通常是0.5,当y>0.5时,就将这个x归到1这一类,如果y<0.5就将x归到0这一类。但是阈值是可以调整的,比如说一个比较保守的人,可能将阈值设为0.9,也就是说有超过90%的把握,才相信这个x属于1这一类。
https://www.cnblogs.com/Belter/p/6128644.html https://www.cnblogs.com/Belter/p/6128644.html






Loading…
Cancel
Save