@@ -0,0 +1,29 @@ | |||||
using System; | |||||
using System.Collections.Generic; | |||||
using System.Text; | |||||
namespace Tensorflow.Keras.ArgsDefinition | |||||
{ | |||||
public class GRUArgs : AutoSerializeLayerArgs | |||||
{ | |||||
public int Units { get; set; } | |||||
public Activation Activation { get; set; } | |||||
public Activation RecurrentActivation { get; set; } | |||||
public bool UseBias { get; set; } = true; | |||||
public float Dropout { get; set; } = .0f; | |||||
public float RecurrentDropout { get; set; } = .0f; | |||||
public IInitializer KernelInitializer { get; set; } | |||||
public IInitializer RecurrentInitializer { get; set; } | |||||
public IInitializer BiasInitializer { get; set; } | |||||
public bool ReturnSequences { get;set; } | |||||
public bool ReturnState { get;set; } | |||||
public bool GoBackwards { get;set; } | |||||
public bool Stateful { get;set; } | |||||
public bool Unroll { get;set; } | |||||
public bool TimeMajor { get;set; } | |||||
public bool ResetAfter { get;set; } | |||||
public int Implementation { get; set; } = 2; | |||||
} | |||||
} |
@@ -0,0 +1,13 @@ | |||||
using System; | |||||
using System.Collections.Generic; | |||||
using System.Text; | |||||
namespace Tensorflow.Keras.ArgsDefinition | |||||
{ | |||||
public class GRUOptionalArgs | |||||
{ | |||||
public string Identifier => "GRU"; | |||||
public Tensor Mask { get; set; } = null; | |||||
} | |||||
} |
@@ -259,6 +259,25 @@ namespace Tensorflow.Keras.Layers | |||||
float recurrent_dropout = 0f, | float recurrent_dropout = 0f, | ||||
bool reset_after = true); | bool reset_after = true); | ||||
public ILayer GRU( | |||||
int units, | |||||
string activation = "tanh", | |||||
string recurrent_activation = "sigmoid", | |||||
bool use_bias = true, | |||||
string kernel_initializer = "glorot_uniform", | |||||
string recurrent_initializer = "orthogonal", | |||||
string bias_initializer = "zeros", | |||||
float dropout = 0f, | |||||
float recurrent_dropout = 0f, | |||||
bool return_sequences = false, | |||||
bool return_state = false, | |||||
bool go_backwards = false, | |||||
bool stateful = false, | |||||
bool unroll = false, | |||||
bool time_major = false, | |||||
bool reset_after = true | |||||
); | |||||
/// <summary> | /// <summary> | ||||
/// Bidirectional wrapper for RNNs. | /// Bidirectional wrapper for RNNs. | ||||
/// </summary> | /// </summary> | ||||
@@ -784,7 +784,7 @@ namespace Tensorflow.Keras.Layers | |||||
string recurrent_activation = "sigmoid", | string recurrent_activation = "sigmoid", | ||||
bool use_bias = true, | bool use_bias = true, | ||||
string kernel_initializer = "glorot_uniform", | string kernel_initializer = "glorot_uniform", | ||||
string recurrent_initializer = "orthogonal", // TODO(Wanglongzhi2001),glorot_uniform has not been developed. | |||||
string recurrent_initializer = "orthogonal", | |||||
string bias_initializer = "zeros", | string bias_initializer = "zeros", | ||||
bool unit_forget_bias = true, | bool unit_forget_bias = true, | ||||
float dropout = 0f, | float dropout = 0f, | ||||
@@ -908,6 +908,65 @@ namespace Tensorflow.Keras.Layers | |||||
ResetAfter = reset_after | ResetAfter = reset_after | ||||
}); | }); | ||||
/// <summary> | |||||
/// Gated Recurrent Unit - Cho et al. 2014. | |||||
/// </summary> | |||||
/// <param name="units">Positive integer, dimensionality of the output space.</param> | |||||
/// <param name="activation">Activation function to use. If you pass `None`, no activation is applied.(ie. "linear" activation: `a(x) = x`).</param> | |||||
/// <param name="recurrent_activation">Activation function to use for the recurrent step. If you pass `None`, no activation is applied. (ie. "linear" activation: `a(x) = x`).</param> | |||||
/// <param name="use_bias">Boolean, (default `True`), whether the layer uses a bias vector.</param> | |||||
/// <param name="kernel_initializer">Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs. Default: `glorot_uniform`.</param> | |||||
/// <param name="recurrent_initializer">Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. Default: `orthogonal`.</param> | |||||
/// <param name="bias_initializer">Initializer for the bias vector. Default: `zeros`.</param> | |||||
/// <param name="dropout">Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0.</param> | |||||
/// <param name="recurrent_dropout">Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0.</param> | |||||
/// <param name="implementation"></param> | |||||
/// <param name="return_sequences">Boolean. Whether to return the last output in the output sequence, or the full sequence. Default: `False`.</param> | |||||
/// <param name="return_state">Boolean. Whether to return the last state in addition to the output. Default: `False`.</param> | |||||
/// <param name="go_backwards">Boolean (default `False`). If True, process the input sequence backwards and return the reversed sequence.</param> | |||||
/// <param name="stateful">Boolean (default False). If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch.</param> | |||||
/// <param name="unroll">Boolean (default False). If True, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN,</param> | |||||
/// <param name="time_major">The shape format of the `inputs` and `outputs` tensors.</param> | |||||
/// <param name="reset_after">GRU convention (whether to apply reset gate after or before matrix multiplication). False = "before", True = "after" (default and cuDNN compatible).</param> | |||||
/// <returns></returns> | |||||
public ILayer GRU( | |||||
int units, | |||||
string activation = "tanh", | |||||
string recurrent_activation = "sigmoid", | |||||
bool use_bias = true, | |||||
string kernel_initializer = "glorot_uniform", | |||||
string recurrent_initializer = "orthogonal", | |||||
string bias_initializer = "zeros", | |||||
float dropout = 0f, | |||||
float recurrent_dropout = 0f, | |||||
bool return_sequences = false, | |||||
bool return_state = false, | |||||
bool go_backwards = false, | |||||
bool stateful = false, | |||||
bool unroll = false, | |||||
bool time_major = false, | |||||
bool reset_after = true | |||||
) | |||||
=> new GRU(new GRUArgs | |||||
{ | |||||
Units = units, | |||||
Activation = keras.activations.GetActivationFromName(activation), | |||||
RecurrentActivation = keras.activations.GetActivationFromName(recurrent_activation), | |||||
KernelInitializer = GetInitializerByName(kernel_initializer), | |||||
RecurrentInitializer = GetInitializerByName(recurrent_initializer), | |||||
BiasInitializer = GetInitializerByName(bias_initializer), | |||||
UseBias = use_bias, | |||||
Dropout = dropout, | |||||
RecurrentDropout = recurrent_dropout, | |||||
ReturnSequences = return_sequences, | |||||
ReturnState = return_state, | |||||
GoBackwards = go_backwards, | |||||
Stateful = stateful, | |||||
TimeMajor = time_major, | |||||
Unroll = unroll, | |||||
ResetAfter = reset_after | |||||
}); | |||||
public ILayer Bidirectional( | public ILayer Bidirectional( | ||||
ILayer layer, | ILayer layer, | ||||
string merge_mode = "concat", | string merge_mode = "concat", | ||||
@@ -0,0 +1,168 @@ | |||||
using System; | |||||
using System.Collections.Generic; | |||||
using System.Text; | |||||
using Tensorflow.Keras.ArgsDefinition; | |||||
using Tensorflow.Common.Extensions; | |||||
using Tensorflow.Common.Types; | |||||
using Tensorflow.Keras.Saving; | |||||
namespace Tensorflow.Keras.Layers | |||||
{ | |||||
public class GRU : RNN | |||||
{ | |||||
GRUArgs _args; | |||||
private static GRUCell _cell; | |||||
bool _return_runtime; | |||||
public GRUCell Cell { get => _cell; } | |||||
public int units { get => _args.Units; } | |||||
public Activation activation { get => _args.Activation; } | |||||
public Activation recurrent_activation { get => _args.RecurrentActivation; } | |||||
public bool use_bias { get => _args.UseBias; } | |||||
public float dropout { get => _args.Dropout; } | |||||
public float recurrent_dropout { get => _args.RecurrentDropout; } | |||||
public IInitializer kernel_initializer { get => _args.KernelInitializer; } | |||||
public IInitializer recurrent_initializer { get => _args.RecurrentInitializer; } | |||||
public IInitializer bias_initializer { get => _args.BiasInitializer; } | |||||
public int implementation { get => _args.Implementation; } | |||||
public bool reset_after { get => _args.ResetAfter; } | |||||
public GRU(GRUArgs args) : base(CreateCell(args), PreConstruct(args)) | |||||
{ | |||||
_args = args; | |||||
if (_args.Implementation == 0) | |||||
{ | |||||
// Use the red output to act as a warning message that can also be used under the release version | |||||
Console.ForegroundColor = ConsoleColor.Red; | |||||
Console.WriteLine("Warning: `implementation=0` has been deprecated, "+ | |||||
"and now defaults to `implementation=2`."+ | |||||
"Please update your layer call."); | |||||
Console.ResetColor(); | |||||
} | |||||
GRUCell cell = new GRUCell(new GRUCellArgs | |||||
{ | |||||
Units = _args.Units, | |||||
Activation = _args.Activation, | |||||
RecurrentActivation = _args.RecurrentActivation, | |||||
UseBias = _args.UseBias, | |||||
Dropout = _args.Dropout, | |||||
RecurrentDropout = _args.RecurrentDropout, | |||||
KernelInitializer = _args.KernelInitializer, | |||||
RecurrentInitializer = _args.RecurrentInitializer, | |||||
BiasInitializer = _args.BiasInitializer, | |||||
ResetAfter = _args.ResetAfter, | |||||
Implementation = _args.Implementation | |||||
}); | |||||
_cell = cell; | |||||
} | |||||
protected override Tensors Call(Tensors inputs, Tensors initial_state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||||
{ | |||||
GRUOptionalArgs? gru_optional_args = optional_args as GRUOptionalArgs; | |||||
if (optional_args is not null && gru_optional_args is null) | |||||
{ | |||||
throw new ArgumentException("The type of optional args should be `GRUOptionalArgs`."); | |||||
} | |||||
Tensors? mask = gru_optional_args?.Mask; | |||||
// Not support ragger input temporarily; | |||||
int row_length = 0; | |||||
bool is_ragged_input = false; | |||||
_validate_args_if_ragged(is_ragged_input, mask); | |||||
// GRU does not support constants.Ignore it during process. | |||||
(inputs, initial_state, _) = this._process_inputs(inputs, initial_state, null); | |||||
if (mask.Length > 1) | |||||
{ | |||||
mask = mask[0]; | |||||
} | |||||
var input_shape = inputs.shape; | |||||
var timesteps = _args.TimeMajor ? input_shape[0] : input_shape[1]; | |||||
// TODO(Wanglongzhi2001), finish _could_use_gpu_kernel part | |||||
Func<Tensors, Tensors, (Tensors, Tensors)> step = (cell_inputs, cell_states) => | |||||
{ | |||||
var res = Cell.Apply(cell_inputs, cell_states, training is null ? true : training.Value); | |||||
var (output, state) = res; | |||||
return (output, state); | |||||
}; | |||||
var (last_output, outputs, states) = keras.backend.rnn( | |||||
step, | |||||
inputs, | |||||
initial_state, | |||||
constants: null, | |||||
go_backwards: _args.GoBackwards, | |||||
mask: mask, | |||||
unroll: _args.Unroll, | |||||
input_length: ops.convert_to_tensor(timesteps), | |||||
time_major: _args.TimeMajor, | |||||
zero_output_for_mask: base.Args.ZeroOutputForMask, | |||||
return_all_outputs: _args.ReturnSequences | |||||
); | |||||
Tensors output; | |||||
if (_args.ReturnSequences) | |||||
{ | |||||
output = outputs; | |||||
} | |||||
else | |||||
{ | |||||
output = last_output; | |||||
} | |||||
if (_args.ReturnState) | |||||
{ | |||||
output = new Tensors { output, states }; | |||||
} | |||||
return output; | |||||
} | |||||
private static IRnnCell CreateCell(GRUArgs gruArgs) | |||||
{ | |||||
return new GRUCell(new GRUCellArgs | |||||
{ | |||||
Units = gruArgs.Units, | |||||
Activation = gruArgs.Activation, | |||||
RecurrentActivation = gruArgs.RecurrentActivation, | |||||
UseBias = gruArgs.UseBias, | |||||
Dropout = gruArgs.Dropout, | |||||
RecurrentDropout = gruArgs.RecurrentDropout, | |||||
KernelInitializer = gruArgs.KernelInitializer, | |||||
RecurrentInitializer = gruArgs.RecurrentInitializer, | |||||
BiasInitializer = gruArgs.BiasInitializer, | |||||
ResetAfter = gruArgs.ResetAfter, | |||||
Implementation = gruArgs.Implementation | |||||
}); | |||||
} | |||||
private static RNNArgs PreConstruct(GRUArgs args) | |||||
{ | |||||
return new RNNArgs | |||||
{ | |||||
ReturnSequences = args.ReturnSequences, | |||||
ReturnState = args.ReturnState, | |||||
GoBackwards = args.GoBackwards, | |||||
Stateful = args.Stateful, | |||||
Unroll = args.Unroll, | |||||
TimeMajor = args.TimeMajor, | |||||
Units = args.Units, | |||||
Activation = args.Activation, | |||||
RecurrentActivation = args.RecurrentActivation, | |||||
UseBias = args.UseBias, | |||||
Dropout = args.Dropout, | |||||
RecurrentDropout = args.RecurrentDropout, | |||||
KernelInitializer = args.KernelInitializer, | |||||
RecurrentInitializer = args.RecurrentInitializer, | |||||
BiasInitializer = args.BiasInitializer | |||||
}; | |||||
} | |||||
} | |||||
} |
@@ -25,8 +25,8 @@ namespace Tensorflow.Keras.Layers | |||||
private RNNArgs _args; | private RNNArgs _args; | ||||
private object _input_spec = null; // or NoneValue?? | private object _input_spec = null; // or NoneValue?? | ||||
private object _state_spec = null; | private object _state_spec = null; | ||||
private Tensors _states = null; | |||||
private object _constants_spec = null; | private object _constants_spec = null; | ||||
private Tensors _states = null; | |||||
private int _num_constants; | private int _num_constants; | ||||
protected IVariableV1 _kernel; | protected IVariableV1 _kernel; | ||||
protected IVariableV1 _bias; | protected IVariableV1 _bias; | ||||
@@ -469,7 +469,7 @@ namespace Tensorflow.Keras.Layers | |||||
return (inputs, initial_state, constants); | return (inputs, initial_state, constants); | ||||
} | } | ||||
private void _validate_args_if_ragged(bool is_ragged_input, Tensors mask) | |||||
protected void _validate_args_if_ragged(bool is_ragged_input, Tensors mask) | |||||
{ | { | ||||
if (!is_ragged_input) | if (!is_ragged_input) | ||||
{ | { | ||||
@@ -528,44 +528,6 @@ namespace Tensorflow.Keras.Layers | |||||
throw new NotImplementedException(); | throw new NotImplementedException(); | ||||
} | } | ||||
// 好像不能cell不能传接口类型 | |||||
//public RNN New(IRnnArgCell cell, | |||||
// bool return_sequences = false, | |||||
// bool return_state = false, | |||||
// bool go_backwards = false, | |||||
// bool stateful = false, | |||||
// bool unroll = false, | |||||
// bool time_major = false) | |||||
// => new RNN(new RNNArgs | |||||
// { | |||||
// Cell = cell, | |||||
// ReturnSequences = return_sequences, | |||||
// ReturnState = return_state, | |||||
// GoBackwards = go_backwards, | |||||
// Stateful = stateful, | |||||
// Unroll = unroll, | |||||
// TimeMajor = time_major | |||||
// }); | |||||
//public RNN New(List<IRnnArgCell> cell, | |||||
// bool return_sequences = false, | |||||
// bool return_state = false, | |||||
// bool go_backwards = false, | |||||
// bool stateful = false, | |||||
// bool unroll = false, | |||||
// bool time_major = false) | |||||
// => new RNN(new RNNArgs | |||||
// { | |||||
// Cell = cell, | |||||
// ReturnSequences = return_sequences, | |||||
// ReturnState = return_state, | |||||
// GoBackwards = go_backwards, | |||||
// Stateful = stateful, | |||||
// Unroll = unroll, | |||||
// TimeMajor = time_major | |||||
// }); | |||||
protected Tensors get_initial_state(Tensors inputs) | protected Tensors get_initial_state(Tensors inputs) | ||||
{ | { | ||||
var input = inputs[0]; | var input = inputs[0]; | ||||
@@ -146,6 +146,15 @@ namespace Tensorflow.Keras.UnitTest.Layers | |||||
} | } | ||||
[TestMethod] | |||||
public void GRU() | |||||
{ | |||||
var inputs = tf.ones((32, 10, 8)); | |||||
var gru = tf.keras.layers.GRU(4); | |||||
var output = gru.Apply(inputs); | |||||
Assert.AreEqual((32, 4), output.shape); | |||||
} | |||||
[TestMethod] | [TestMethod] | ||||
public void Bidirectional() | public void Bidirectional() | ||||
{ | { | ||||