@@ -339,6 +339,13 @@ namespace Tensorflow | |||||
=> image_ops_impl.decode_image(contents, channels: channels, dtype: dtype, | => image_ops_impl.decode_image(contents, channels: channels, dtype: dtype, | ||||
name: name, expand_animations: expand_animations); | name: name, expand_animations: expand_animations); | ||||
public Tensor encode_png(Tensor contents, string name = null) | |||||
=> image_ops_impl.encode_png(contents, name: name); | |||||
public Tensor encode_jpeg(Tensor contents, string name = null) | |||||
=> image_ops_impl.encode_jpeg(contents, name: name); | |||||
/// <summary> | /// <summary> | ||||
/// Convenience function to check if the 'contents' encodes a JPEG image. | /// Convenience function to check if the 'contents' encodes a JPEG image. | ||||
/// </summary> | /// </summary> | ||||
@@ -16,6 +16,7 @@ | |||||
using System.Collections.Generic; | using System.Collections.Generic; | ||||
using Tensorflow.IO; | using Tensorflow.IO; | ||||
using Tensorflow.Operations; | |||||
namespace Tensorflow | namespace Tensorflow | ||||
{ | { | ||||
@@ -46,6 +47,12 @@ namespace Tensorflow | |||||
public Tensor[] restore_v2(Tensor prefix, string[] tensor_names, | public Tensor[] restore_v2(Tensor prefix, string[] tensor_names, | ||||
string[] shape_and_slices, TF_DataType[] dtypes, string name = null) | string[] shape_and_slices, TF_DataType[] dtypes, string name = null) | ||||
=> ops.restore_v2(prefix, tensor_names, shape_and_slices, dtypes, name: name); | => ops.restore_v2(prefix, tensor_names, shape_and_slices, dtypes, name: name); | ||||
public Operation write_file(string filename, Tensor conentes, string name = null) | |||||
=> write_file(Tensorflow.ops.convert_to_tensor(filename, TF_DataType.TF_STRING), conentes, name); | |||||
public Operation write_file(Tensor filename, Tensor conentes, string name = null) | |||||
=> gen_ops.write_file(filename, conentes, name); | |||||
} | } | ||||
public GFile gfile = new GFile(); | public GFile gfile = new GFile(); | ||||
@@ -55,6 +55,12 @@ namespace Tensorflow.Keras.Layers | |||||
string kernel_initializer = "glorot_uniform", | string kernel_initializer = "glorot_uniform", | ||||
string bias_initializer = "zeros"); | string bias_initializer = "zeros"); | ||||
public ILayer Conv2D(int filters, | |||||
Shape kernel_size = null, | |||||
Shape strides = null, | |||||
string padding = "valid" | |||||
); | |||||
public ILayer Conv2D(int filters, | public ILayer Conv2D(int filters, | ||||
Shape kernel_size = null, | Shape kernel_size = null, | ||||
Shape strides = null, | Shape strides = null, | ||||
@@ -102,7 +102,10 @@ namespace Tensorflow | |||||
{ | { | ||||
throw new ValueError("\'image\' must be fully defined."); | throw new ValueError("\'image\' must be fully defined."); | ||||
} | } | ||||
var dims = image_shape["-3:"]; | |||||
var dims = new Shape(new[] { | |||||
image_shape.dims[image_shape.dims.Length - 3], | |||||
image_shape.dims[image_shape.dims.Length - 2], | |||||
image_shape.dims[image_shape.dims.Length - 1]}); | |||||
foreach (var dim in dims.dims) | foreach (var dim in dims.dims) | ||||
{ | { | ||||
if (dim == 0) | if (dim == 0) | ||||
@@ -112,16 +115,18 @@ namespace Tensorflow | |||||
} | } | ||||
var image_shape_last_three_elements = new Shape(new[] { | var image_shape_last_three_elements = new Shape(new[] { | ||||
image_shape.dims[image_shape.dims.Length - 1], | |||||
image_shape.dims[image_shape.dims.Length - 3], | |||||
image_shape.dims[image_shape.dims.Length - 2], | image_shape.dims[image_shape.dims.Length - 2], | ||||
image_shape.dims[image_shape.dims.Length - 3]}); | |||||
image_shape.dims[image_shape.dims.Length - 1]}); | |||||
if (!image_shape_last_three_elements.IsFullyDefined) | if (!image_shape_last_three_elements.IsFullyDefined) | ||||
{ | { | ||||
Tensor image_shape_ = array_ops.shape(image); | Tensor image_shape_ = array_ops.shape(image); | ||||
var image_shape_return = tf.constant(new[] { | |||||
image_shape_.dims[image_shape.dims.Length - 1], | |||||
image_shape_.dims[image_shape.dims.Length - 2], | |||||
image_shape_.dims[image_shape.dims.Length - 3]}); | |||||
var image_shape_return = tf.slice(image_shape_, new[] { Math.Max(image_shape.dims.Length - 3, 0) }, new[] { 3 }); | |||||
//var image_shape_return = tf.constant(new[] { | |||||
// image_shape_.dims[image_shape_.dims.Length - 3], | |||||
// image_shape_.dims[image_shape_.dims.Length - 2], | |||||
// image_shape_.dims[image_shape_.dims.Length - 1]}); | |||||
return new Operation[] { | return new Operation[] { | ||||
check_ops.assert_positive( | check_ops.assert_positive( | ||||
@@ -209,10 +214,10 @@ namespace Tensorflow | |||||
} | } | ||||
public static Tensor flip_left_right(Tensor image) | public static Tensor flip_left_right(Tensor image) | ||||
=> _flip(image, 0, "flip_left_right"); | |||||
=> _flip(image, 1, "flip_left_right"); | |||||
public static Tensor flip_up_down(Tensor image) | public static Tensor flip_up_down(Tensor image) | ||||
=> _flip(image, 1, "flip_up_down"); | |||||
=> _flip(image, 0, "flip_up_down"); | |||||
internal static Tensor _flip(Tensor image, int flip_index, string scope_name) | internal static Tensor _flip(Tensor image, int flip_index, string scope_name) | ||||
{ | { | ||||
@@ -223,11 +228,11 @@ namespace Tensorflow | |||||
Shape shape = image.shape; | Shape shape = image.shape; | ||||
if (shape.ndim == 3 || shape.ndim == Unknown) | if (shape.ndim == 3 || shape.ndim == Unknown) | ||||
{ | { | ||||
return fix_image_flip_shape(image, gen_array_ops.reverse(image, ops.convert_to_tensor(new int[] { flip_index }))); | |||||
return fix_image_flip_shape(image, gen_array_ops.reverse_v2(image, ops.convert_to_tensor(new int[] { flip_index }))); | |||||
} | } | ||||
else if (shape.ndim == 4) | else if (shape.ndim == 4) | ||||
{ | { | ||||
return gen_array_ops.reverse_v2(image, ops.convert_to_tensor(new[] { (flip_index + 1) % 2 })); | |||||
return gen_array_ops.reverse_v2(image, ops.convert_to_tensor(new[] { flip_index + 1 })); | |||||
} | } | ||||
else | else | ||||
{ | { | ||||
@@ -2047,6 +2052,22 @@ new_height, new_width"); | |||||
}); | }); | ||||
} | } | ||||
public static Tensor encode_jpeg(Tensor contents, string name = null) | |||||
{ | |||||
return tf_with(ops.name_scope(name, "encode_jpeg"), scope => | |||||
{ | |||||
return gen_ops.encode_jpeg(contents, name:name); | |||||
}); | |||||
} | |||||
public static Tensor encode_png(Tensor contents, string name = null) | |||||
{ | |||||
return tf_with(ops.name_scope(name, "encode_png"), scope => | |||||
{ | |||||
return gen_ops.encode_png(contents, name: name); | |||||
}); | |||||
} | |||||
public static Tensor is_jpeg(Tensor contents, string name = null) | public static Tensor is_jpeg(Tensor contents, string name = null) | ||||
{ | { | ||||
return tf_with(ops.name_scope(name, "is_jpeg"), scope => | return tf_with(ops.name_scope(name, "is_jpeg"), scope => | ||||
@@ -112,7 +112,28 @@ namespace Tensorflow.Keras.Layers | |||||
KernelInitializer = GetInitializerByName(kernel_initializer), | KernelInitializer = GetInitializerByName(kernel_initializer), | ||||
BiasInitializer = GetInitializerByName(bias_initializer) | BiasInitializer = GetInitializerByName(bias_initializer) | ||||
}); | }); | ||||
public ILayer Conv2D(int filters, | |||||
Shape kernel_size = null, | |||||
Shape strides = null, | |||||
string padding = "valid") | |||||
=> new Conv2D(new Conv2DArgs | |||||
{ | |||||
Rank = 2, | |||||
Filters = filters, | |||||
KernelSize = (kernel_size == null) ? (5, 5) : kernel_size, | |||||
Strides = strides == null ? (1, 1) : strides, | |||||
Padding = padding, | |||||
DataFormat = null, | |||||
DilationRate = (1, 1), | |||||
Groups = 1, | |||||
UseBias = false, | |||||
KernelRegularizer = null, | |||||
KernelInitializer =tf.glorot_uniform_initializer, | |||||
BiasInitializer = tf.zeros_initializer, | |||||
BiasRegularizer = null, | |||||
ActivityRegularizer = null, | |||||
Activation = keras.activations.Linear, | |||||
}); | |||||
/// <summary> | /// <summary> | ||||
/// 2D convolution layer (e.g. spatial convolution over images). | /// 2D convolution layer (e.g. spatial convolution over images). | ||||
/// This layer creates a convolution kernel that is convolved with the layer input to produce a tensor of outputs. | /// This layer creates a convolution kernel that is convolved with the layer input to produce a tensor of outputs. | ||||
@@ -4,6 +4,7 @@ using System.Linq; | |||||
using Tensorflow; | using Tensorflow; | ||||
using static Tensorflow.Binding; | using static Tensorflow.Binding; | ||||
using System; | using System; | ||||
using System.IO; | |||||
namespace TensorFlowNET.UnitTest | namespace TensorFlowNET.UnitTest | ||||
{ | { | ||||
@@ -164,5 +165,94 @@ namespace TensorFlowNET.UnitTest | |||||
Assert.AreEqual(result.size, 16ul); | Assert.AreEqual(result.size, 16ul); | ||||
Assert.AreEqual(result[0, 0, 0, 0], 12f); | Assert.AreEqual(result[0, 0, 0, 0], 12f); | ||||
} | } | ||||
[TestMethod] | |||||
public void ImageSaveTest() | |||||
{ | |||||
var imgPath = TestHelper.GetFullPathFromDataDir("img001.bmp"); | |||||
var jpegImgPath = TestHelper.GetFullPathFromDataDir("img001.jpeg"); | |||||
var pngImgPath = TestHelper.GetFullPathFromDataDir("img001.png"); | |||||
File.Delete(jpegImgPath); | |||||
File.Delete(pngImgPath); | |||||
var contents = tf.io.read_file(imgPath); | |||||
var bmp = tf.image.decode_image(contents); | |||||
Assert.AreEqual(bmp.name, "decode_image/DecodeImage:0"); | |||||
var jpeg = tf.image.encode_jpeg(bmp); | |||||
var op1 = tf.io.write_file(jpegImgPath, jpeg); | |||||
var png = tf.image.encode_png(bmp); | |||||
var op2 = tf.io.write_file(pngImgPath, png); | |||||
this.session().run(op1); | |||||
this.session().run(op2); | |||||
Assert.IsTrue(File.Exists(jpegImgPath), "not find file:" + jpegImgPath); | |||||
Assert.IsTrue(File.Exists(pngImgPath), "not find file:" + pngImgPath); | |||||
// 如果要测试图片正确性,需要注释下面两行代码 | |||||
File.Delete(jpegImgPath); | |||||
File.Delete(pngImgPath); | |||||
} | |||||
[TestMethod] | |||||
public void ImageFlipTest() | |||||
{ | |||||
var imgPath = TestHelper.GetFullPathFromDataDir("img001.bmp"); | |||||
var contents = tf.io.read_file(imgPath); | |||||
var bmp = tf.image.decode_image(contents); | |||||
// 左右翻转 | |||||
var lrImgPath = TestHelper.GetFullPathFromDataDir("img001_lr.png"); | |||||
File.Delete(lrImgPath); | |||||
var lr = tf.image.flip_left_right(bmp); | |||||
var png = tf.image.encode_png(lr); | |||||
var op = tf.io.write_file(lrImgPath, png); | |||||
this.session().run(op); | |||||
Assert.IsTrue(File.Exists(lrImgPath), "not find file:" + lrImgPath); | |||||
// 上下翻转 | |||||
var updownImgPath = TestHelper.GetFullPathFromDataDir("img001_updown.png"); | |||||
File.Delete(updownImgPath); | |||||
var updown = tf.image.flip_up_down(bmp); | |||||
var pngupdown = tf.image.encode_png(updown); | |||||
var op2 = tf.io.write_file(updownImgPath, pngupdown); | |||||
this.session().run(op2); | |||||
Assert.IsTrue(File.Exists(updownImgPath)); | |||||
// 暂时先人工观测图片是否翻转,观测时需要删除下面这两行代码 | |||||
File.Delete(lrImgPath); | |||||
File.Delete(updownImgPath); | |||||
// 多图翻转 | |||||
// 目前直接通过 bmp 拿到 shape ,这里先用默认定义图片大小来构建了 | |||||
var mImg = tf.stack(new[] { bmp, lr }, axis:0); | |||||
print(mImg.shape); | |||||
var up2 = tf.image.flip_up_down(mImg); | |||||
var updownImgPath_m1 = TestHelper.GetFullPathFromDataDir("img001_m_ud.png"); // 直接上下翻转 | |||||
File.Delete(updownImgPath_m1); | |||||
var img001_updown_m2 = TestHelper.GetFullPathFromDataDir("img001_m_lr_ud.png"); // 先左右再上下 | |||||
File.Delete(img001_updown_m2); | |||||
var png2 = tf.image.encode_png(up2[0]); | |||||
tf.io.write_file(updownImgPath_m1, png2); | |||||
png2 = tf.image.encode_png(up2[1]); | |||||
tf.io.write_file(img001_updown_m2, png2); | |||||
// 如果要测试图片正确性,需要注释下面两行代码 | |||||
File.Delete(updownImgPath_m1); | |||||
File.Delete(img001_updown_m2); | |||||
} | |||||
} | } | ||||
} | } |
@@ -3,6 +3,7 @@ using Tensorflow.NumPy; | |||||
using Tensorflow; | using Tensorflow; | ||||
using static Tensorflow.Binding; | using static Tensorflow.Binding; | ||||
using System.Linq; | using System.Linq; | ||||
using Tensorflow.Operations; | |||||
namespace TensorFlowNET.UnitTest.ManagedAPI | namespace TensorFlowNET.UnitTest.ManagedAPI | ||||
{ | { | ||||
@@ -105,5 +106,321 @@ namespace TensorFlowNET.UnitTest.ManagedAPI | |||||
Assert.IsTrue(Equal(a[0].ToArray<float>().Reverse().ToArray(), b[0].ToArray<float>())); | Assert.IsTrue(Equal(a[0].ToArray<float>().Reverse().ToArray(), b[0].ToArray<float>())); | ||||
Assert.IsTrue(Equal(a[1].ToArray<float>().Reverse().ToArray(), b[1].ToArray<float>())); | Assert.IsTrue(Equal(a[1].ToArray<float>().Reverse().ToArray(), b[1].ToArray<float>())); | ||||
} | } | ||||
[TestMethod] | |||||
public void ReverseImgArray3D() | |||||
{ | |||||
// 创建 sourceImg 数组 | |||||
var sourceImgArray = new float[,,] { | |||||
{ | |||||
{ 237, 28, 36 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
}, | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
} | |||||
}; | |||||
var sourceImg = ops.convert_to_tensor(sourceImgArray); | |||||
// 创建 lrImg 数组 | |||||
var lrImgArray = new float[,,] { | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 237, 28, 36 } | |||||
}, | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
} | |||||
}; | |||||
var lrImg = ops.convert_to_tensor(lrImgArray); | |||||
var lr = tf.image.flip_left_right(sourceImg); | |||||
Assert.IsTrue(Equal(lrImg.numpy().ToArray<float>(), lr.numpy().ToArray<float>()), "tf.image.flip_left_right fail."); | |||||
var lr2 = tf.reverse(sourceImg, 1); | |||||
Assert.IsTrue(Equal(lrImg.numpy().ToArray<float>(), lr2.numpy().ToArray<float>()), "tf.reverse (axis=1) fail."); | |||||
var lr3 = gen_array_ops.reverse_v2(sourceImg, ops.convert_to_tensor(new[] { 1 })); | |||||
Assert.IsTrue(Equal(lrImg.numpy().ToArray<float>(), lr3.numpy().ToArray<float>()), "gen_array_ops.reverse_v2 axis=1 fail."); | |||||
// 创建 udImg 数组 | |||||
var udImgArray = new float[,,] { | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
}, | |||||
{ | |||||
{ 237, 28, 36 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
} | |||||
}; | |||||
var udImg = ops.convert_to_tensor(udImgArray); | |||||
var ud = tf.image.flip_up_down(sourceImg); | |||||
Assert.IsTrue(Equal(udImg.numpy().ToArray<float>(), ud.numpy().ToArray<float>()), "tf.image.flip_up_down fail."); | |||||
var ud2 = tf.reverse(sourceImg, new Axis(0)); | |||||
Assert.IsTrue(Equal(udImg.numpy().ToArray<float>(), ud2.numpy().ToArray<float>()), "tf.reverse (axis=0) fail."); | |||||
var ud3 = gen_array_ops.reverse_v2(sourceImg, ops.convert_to_tensor(new[] { 0 })); | |||||
Assert.IsTrue(Equal(udImg.numpy().ToArray<float>(), ud3.numpy().ToArray<float>()), "gen_array_ops.reverse_v2 axis=0 fail."); | |||||
} | |||||
[TestMethod] | |||||
public void ReverseImgArray4D() | |||||
{ | |||||
// 原图左上角,加一张左右翻转后的图片 | |||||
var m = new float[,,,] { | |||||
{ | |||||
{ | |||||
{ 237, 28, 36 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
}, | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
} | |||||
}, | |||||
{ | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 237, 28, 36 } | |||||
}, | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
} | |||||
} | |||||
}; | |||||
var sourceImg = ops.convert_to_tensor(m); | |||||
var lrArray = new float[,,,] { | |||||
{ | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 237, 28, 36 }, | |||||
}, | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
} | |||||
}, | |||||
{ | |||||
{ | |||||
{ 237, 28, 36 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
}, | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
} | |||||
} | |||||
}; | |||||
var lrImg = ops.convert_to_tensor(lrArray); | |||||
// 创建 ud 数组 | |||||
var udArray = new float[,,,] { | |||||
{ | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
}, | |||||
{ | |||||
{ 237, 28, 36 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
} | |||||
}, | |||||
{ | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
}, | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 237, 28, 36 } | |||||
} | |||||
} | |||||
}; | |||||
var udImg = ops.convert_to_tensor(udArray); | |||||
var ud3 = gen_array_ops.reverse_v2(sourceImg, ops.convert_to_tensor(new[] { 1 })); | |||||
Assert.IsTrue(Equal(udImg.numpy().ToArray<float>(), ud3.numpy().ToArray<float>()), "gen_array_ops.reverse_v2 axis=1 fail."); | |||||
var ud2 = tf.reverse(sourceImg, new Axis(1)); | |||||
Assert.IsTrue(Equal(udImg.numpy().ToArray<float>(), ud2.numpy().ToArray<float>()), "tf.reverse (axis=1) fail."); | |||||
var ud = tf.image.flip_up_down(sourceImg); | |||||
Assert.IsTrue(Equal(udImg.numpy().ToArray<float>(), ud.numpy().ToArray<float>()), "tf.image.flip_up_down fail."); | |||||
// 左右翻转 | |||||
var lr = tf.image.flip_left_right(sourceImg); | |||||
Assert.IsTrue(Equal(lrImg.numpy().ToArray<float>(), lr.numpy().ToArray<float>()), "tf.image.flip_left_right fail."); | |||||
var lr2 = tf.reverse(sourceImg, 0); | |||||
Assert.IsTrue(Equal(lrImg.numpy().ToArray<float>(), lr2.numpy().ToArray<float>()), "tf.reverse (axis=1) fail."); | |||||
var lr3 = gen_array_ops.reverse_v2(sourceImg, ops.convert_to_tensor(new[] { 0 })); | |||||
Assert.IsTrue(Equal(lrImg.numpy().ToArray<float>(), lr3.numpy().ToArray<float>()), "gen_array_ops.reverse_v2 axis=1 fail."); | |||||
} | |||||
[TestMethod] | |||||
public void ReverseImgArray4D_3x3() | |||||
{ | |||||
// 原图左上角,加一张左右翻转后的图片 | |||||
var m = new float[,,,] { | |||||
{ | |||||
{ | |||||
{ 237, 28, 36 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
}, | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
}, | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
} | |||||
}, | |||||
{ | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 237, 28, 36 } | |||||
}, | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
}, | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
} | |||||
} | |||||
}; | |||||
var sourceImg = ops.convert_to_tensor(m); | |||||
var lrArray = new float[,,,] { | |||||
{ | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 237, 28, 36 }, | |||||
}, | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
}, | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
} | |||||
}, | |||||
{ | |||||
{ | |||||
{ 237, 28, 36 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
}, | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
}, | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
} | |||||
} | |||||
}; | |||||
var lrImg = ops.convert_to_tensor(lrArray); | |||||
// 创建 ud 数组 | |||||
var udArray = new float[,,,] { | |||||
{ | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
}, | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
}, | |||||
{ | |||||
{ 237, 28, 36 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
} | |||||
}, | |||||
{ { | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
}, | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 } | |||||
}, | |||||
{ | |||||
{ 255, 255, 255 }, | |||||
{ 255, 255, 255 }, | |||||
{ 237, 28, 36 } | |||||
} | |||||
} | |||||
}; | |||||
var udImg = ops.convert_to_tensor(udArray); | |||||
var ud3 = gen_array_ops.reverse_v2(sourceImg, ops.convert_to_tensor(new[] { 1 })); | |||||
Assert.IsTrue(Equal(udImg.numpy().ToArray<float>(), ud3.numpy().ToArray<float>()), "gen_array_ops.reverse_v2 axis=1 fail."); | |||||
var ud2 = tf.reverse(sourceImg, new Axis(1)); | |||||
Assert.IsTrue(Equal(udImg.numpy().ToArray<float>(), ud2.numpy().ToArray<float>()), "tf.reverse (axis=1) fail."); | |||||
var ud = tf.image.flip_up_down(sourceImg); | |||||
Assert.IsTrue(Equal(udImg.numpy().ToArray<float>(), ud.numpy().ToArray<float>()), "tf.image.flip_up_down fail."); | |||||
// 左右翻转 | |||||
var lr = tf.image.flip_left_right(sourceImg); | |||||
Assert.IsTrue(Equal(lrImg.numpy().ToArray<float>(), lr.numpy().ToArray<float>()), "tf.image.flip_left_right fail."); | |||||
var lr2 = tf.reverse(sourceImg, 0); | |||||
Assert.IsTrue(Equal(lrImg.numpy().ToArray<float>(), lr2.numpy().ToArray<float>()), "tf.reverse (axis=1) fail."); | |||||
var lr3 = gen_array_ops.reverse_v2(sourceImg, ops.convert_to_tensor(new[] { 0 })); | |||||
Assert.IsTrue(Equal(lrImg.numpy().ToArray<float>(), lr3.numpy().ToArray<float>()), "gen_array_ops.reverse_v2 axis=1 fail."); | |||||
} | |||||
} | } | ||||
} | } |
@@ -0,0 +1,44 @@ | |||||
using Microsoft.VisualStudio.TestTools.UnitTesting; | |||||
using Tensorflow.NumPy; | |||||
using System; | |||||
using System.Linq; | |||||
using static Tensorflow.Binding; | |||||
using Tensorflow; | |||||
namespace TensorFlowNET.UnitTest.NumPy | |||||
{ | |||||
[TestClass] | |||||
public class ShapeTest : EagerModeTestBase | |||||
{ | |||||
[Ignore] | |||||
[TestMethod] | |||||
public unsafe void ShapeGetLastElements() | |||||
{ | |||||
// test code from function _CheckAtLeast3DImage | |||||
// 之前的 _CheckAtLeast3DImage 有bug,现在通过测试,下面的代码是正确的 | |||||
// todo: shape["-3:"] 的写法,目前有bug,需要修复,单元测试等修复后再放开,暂时先忽略测试 | |||||
var image_shape = new Shape(new[] { 32, 64, 3 }); | |||||
var image_shape_4d = new Shape(new[] { 4, 64, 32, 3 }); | |||||
var image_shape_last_three_elements = new Shape(new[] { | |||||
image_shape.dims[image_shape.dims.Length - 3], | |||||
image_shape.dims[image_shape.dims.Length - 2], | |||||
image_shape.dims[image_shape.dims.Length - 1]}); | |||||
var image_shape_last_three_elements2 = image_shape["-3:"]; | |||||
Assert.IsTrue(Equal(image_shape_last_three_elements.dims, image_shape_last_three_elements2.dims), "3dims get fail."); | |||||
var image_shape_last_three_elements_4d = new Shape(new[] { | |||||
image_shape_4d.dims[image_shape_4d.dims.Length - 3], | |||||
image_shape_4d.dims[image_shape_4d.dims.Length - 2], | |||||
image_shape_4d.dims[image_shape_4d.dims.Length - 1]}); | |||||
var image_shape_last_three_elements2_4d = image_shape_4d["-3:"]; | |||||
Assert.IsTrue(Equals(image_shape_last_three_elements_4d.dims, image_shape_last_three_elements2_4d.dims), "4dims get fail."); | |||||
} | |||||
} | |||||
} |