@@ -15,5 +15,5 @@ public interface ICallback | |||||
void on_predict_end(); | void on_predict_end(); | ||||
void on_test_begin(); | void on_test_begin(); | ||||
void on_test_batch_begin(long step); | void on_test_batch_begin(long step); | ||||
void on_test_batch_end(long end_step, IEnumerable<(string, Tensor)> logs); | |||||
void on_test_batch_end(long end_step, Dictionary<string, float> logs); | |||||
} | } |
@@ -22,6 +22,7 @@ public interface IModel : ILayer | |||||
int verbose = 1, | int verbose = 1, | ||||
List<ICallback> callbacks = null, | List<ICallback> callbacks = null, | ||||
float validation_split = 0f, | float validation_split = 0f, | ||||
(NDArray val_x, NDArray val_y)? validation_data = null, | |||||
bool shuffle = true, | bool shuffle = true, | ||||
int initial_epoch = 0, | int initial_epoch = 0, | ||||
int max_queue_size = 10, | int max_queue_size = 10, | ||||
@@ -34,6 +35,7 @@ public interface IModel : ILayer | |||||
int verbose = 1, | int verbose = 1, | ||||
List<ICallback> callbacks = null, | List<ICallback> callbacks = null, | ||||
float validation_split = 0f, | float validation_split = 0f, | ||||
(IEnumerable<NDArray> val_x, NDArray val_y)? validation_data = null, | |||||
bool shuffle = true, | bool shuffle = true, | ||||
int initial_epoch = 0, | int initial_epoch = 0, | ||||
int max_queue_size = 10, | int max_queue_size = 10, | ||||
@@ -65,7 +67,8 @@ public interface IModel : ILayer | |||||
int max_queue_size = 10, | int max_queue_size = 10, | ||||
int workers = 1, | int workers = 1, | ||||
bool use_multiprocessing = false, | bool use_multiprocessing = false, | ||||
bool return_dict = false); | |||||
bool return_dict = false, | |||||
bool is_val = false); | |||||
Tensors predict(Tensors x, | Tensors predict(Tensors x, | ||||
int batch_size = -1, | int batch_size = -1, | ||||
@@ -69,7 +69,7 @@ public class CallbackList | |||||
{ | { | ||||
callbacks.ForEach(x => x.on_test_batch_begin(step)); | callbacks.ForEach(x => x.on_test_batch_begin(step)); | ||||
} | } | ||||
public void on_test_batch_end(long end_step, IEnumerable<(string, Tensor)> logs) | |||||
public void on_test_batch_end(long end_step, Dictionary<string, float> logs) | |||||
{ | { | ||||
callbacks.ForEach(x => x.on_test_batch_end(end_step, logs)); | callbacks.ForEach(x => x.on_test_batch_end(end_step, logs)); | ||||
} | } | ||||
@@ -121,7 +121,7 @@ public class EarlyStopping: ICallback | |||||
public void on_predict_end() { } | public void on_predict_end() { } | ||||
public void on_test_begin() { } | public void on_test_begin() { } | ||||
public void on_test_batch_begin(long step) { } | public void on_test_batch_begin(long step) { } | ||||
public void on_test_batch_end(long end_step, IEnumerable<(string, Tensor)> logs) { } | |||||
public void on_test_batch_end(long end_step, Dictionary<string, float> logs) { } | |||||
float get_monitor_value(Dictionary<string, float> logs) | float get_monitor_value(Dictionary<string, float> logs) | ||||
{ | { | ||||
@@ -48,7 +48,7 @@ public class History : ICallback | |||||
{ | { | ||||
history[log.Key] = new List<float>(); | history[log.Key] = new List<float>(); | ||||
} | } | ||||
history[log.Key].Add((float)log.Value); | |||||
history[log.Key].Add(log.Value); | |||||
} | } | ||||
} | } | ||||
@@ -78,7 +78,7 @@ public class History : ICallback | |||||
} | } | ||||
public void on_test_batch_end(long end_step, IEnumerable<(string, Tensor)> logs) | |||||
public void on_test_batch_end(long end_step, Dictionary<string, float> logs) | |||||
{ | { | ||||
} | } | ||||
} | } |
@@ -105,11 +105,11 @@ namespace Tensorflow.Keras.Callbacks | |||||
{ | { | ||||
_sw.Restart(); | _sw.Restart(); | ||||
} | } | ||||
public void on_test_batch_end(long end_step, IEnumerable<(string, Tensor)> logs) | |||||
public void on_test_batch_end(long end_step, Dictionary<string, float> logs) | |||||
{ | { | ||||
_sw.Stop(); | _sw.Stop(); | ||||
var elapse = _sw.ElapsedMilliseconds; | var elapse = _sw.ElapsedMilliseconds; | ||||
var results = string.Join(" - ", logs.Select(x => $"{x.Item1}: {(float)x.Item2.numpy():F6}")); | |||||
var results = string.Join(" - ", logs.Select(x => $"{x.Key}: {x.Value:F6}")); | |||||
Binding.tf_output_redirect.Write($"{end_step + 1:D4}/{_parameters.Steps:D4} - {elapse}ms/step - {results}"); | Binding.tf_output_redirect.Write($"{end_step + 1:D4}/{_parameters.Steps:D4} - {elapse}ms/step - {results}"); | ||||
if (!Console.IsOutputRedirected) | if (!Console.IsOutputRedirected) | ||||
@@ -26,6 +26,7 @@ namespace Tensorflow.Keras.Engine | |||||
/// <param name="workers"></param> | /// <param name="workers"></param> | ||||
/// <param name="use_multiprocessing"></param> | /// <param name="use_multiprocessing"></param> | ||||
/// <param name="return_dict"></param> | /// <param name="return_dict"></param> | ||||
/// <param name="is_val"></param> | |||||
public Dictionary<string, float> evaluate(NDArray x, NDArray y, | public Dictionary<string, float> evaluate(NDArray x, NDArray y, | ||||
int batch_size = -1, | int batch_size = -1, | ||||
int verbose = 1, | int verbose = 1, | ||||
@@ -33,7 +34,9 @@ namespace Tensorflow.Keras.Engine | |||||
int max_queue_size = 10, | int max_queue_size = 10, | ||||
int workers = 1, | int workers = 1, | ||||
bool use_multiprocessing = false, | bool use_multiprocessing = false, | ||||
bool return_dict = false) | |||||
bool return_dict = false, | |||||
bool is_val = false | |||||
) | |||||
{ | { | ||||
if (x.dims[0] != y.dims[0]) | if (x.dims[0] != y.dims[0]) | ||||
{ | { | ||||
@@ -63,11 +66,11 @@ namespace Tensorflow.Keras.Engine | |||||
}); | }); | ||||
callbacks.on_test_begin(); | callbacks.on_test_begin(); | ||||
IEnumerable<(string, Tensor)> logs = null; | |||||
//Dictionary<string, float>? logs = null; | |||||
var logs = new Dictionary<string, float>(); | |||||
foreach (var (epoch, iterator) in data_handler.enumerate_epochs()) | foreach (var (epoch, iterator) in data_handler.enumerate_epochs()) | ||||
{ | { | ||||
reset_metrics(); | reset_metrics(); | ||||
callbacks.on_epoch_begin(epoch); | |||||
// data_handler.catch_stop_iteration(); | // data_handler.catch_stop_iteration(); | ||||
foreach (var step in data_handler.steps()) | foreach (var step in data_handler.steps()) | ||||
@@ -75,19 +78,64 @@ namespace Tensorflow.Keras.Engine | |||||
callbacks.on_test_batch_begin(step); | callbacks.on_test_batch_begin(step); | ||||
logs = test_function(data_handler, iterator); | logs = test_function(data_handler, iterator); | ||||
var end_step = step + data_handler.StepIncrement; | var end_step = step + data_handler.StepIncrement; | ||||
callbacks.on_test_batch_end(end_step, logs); | |||||
if (is_val == false) | |||||
callbacks.on_test_batch_end(end_step, logs); | |||||
} | } | ||||
} | } | ||||
var results = new Dictionary<string, float>(); | var results = new Dictionary<string, float>(); | ||||
foreach (var log in logs) | foreach (var log in logs) | ||||
{ | { | ||||
results[log.Item1] = (float)log.Item2; | |||||
results[log.Key] = log.Value; | |||||
} | } | ||||
return results; | return results; | ||||
} | } | ||||
public Dictionary<string, float> evaluate(IDatasetV2 x, int verbose = 1) | |||||
public Dictionary<string, float> evaluate(IEnumerable<Tensor> x, NDArray y, int verbose = 1, bool is_val = false) | |||||
{ | |||||
var data_handler = new DataHandler(new DataHandlerArgs | |||||
{ | |||||
X = new Tensors(x), | |||||
Y = y, | |||||
Model = this, | |||||
StepsPerExecution = _steps_per_execution | |||||
}); | |||||
var callbacks = new CallbackList(new CallbackParams | |||||
{ | |||||
Model = this, | |||||
Verbose = verbose, | |||||
Steps = data_handler.Inferredsteps | |||||
}); | |||||
callbacks.on_test_begin(); | |||||
Dictionary<string, float> logs = null; | |||||
foreach (var (epoch, iterator) in data_handler.enumerate_epochs()) | |||||
{ | |||||
reset_metrics(); | |||||
callbacks.on_epoch_begin(epoch); | |||||
// data_handler.catch_stop_iteration(); | |||||
foreach (var step in data_handler.steps()) | |||||
{ | |||||
callbacks.on_test_batch_begin(step); | |||||
logs = test_step_multi_inputs_function(data_handler, iterator); | |||||
var end_step = step + data_handler.StepIncrement; | |||||
if (is_val == false) | |||||
callbacks.on_test_batch_end(end_step, logs); | |||||
} | |||||
} | |||||
var results = new Dictionary<string, float>(); | |||||
foreach (var log in logs) | |||||
{ | |||||
results[log.Key] = log.Value; | |||||
} | |||||
return results; | |||||
} | |||||
public Dictionary<string, float> evaluate(IDatasetV2 x, int verbose = 1, bool is_val = false) | |||||
{ | { | ||||
var data_handler = new DataHandler(new DataHandlerArgs | var data_handler = new DataHandler(new DataHandlerArgs | ||||
{ | { | ||||
@@ -104,7 +152,7 @@ namespace Tensorflow.Keras.Engine | |||||
}); | }); | ||||
callbacks.on_test_begin(); | callbacks.on_test_begin(); | ||||
IEnumerable<(string, Tensor)> logs = null; | |||||
Dictionary<string, float> logs = null; | |||||
foreach (var (epoch, iterator) in data_handler.enumerate_epochs()) | foreach (var (epoch, iterator) in data_handler.enumerate_epochs()) | ||||
{ | { | ||||
reset_metrics(); | reset_metrics(); | ||||
@@ -113,28 +161,38 @@ namespace Tensorflow.Keras.Engine | |||||
foreach (var step in data_handler.steps()) | foreach (var step in data_handler.steps()) | ||||
{ | { | ||||
// callbacks.on_train_batch_begin(step) | |||||
callbacks.on_test_batch_begin(step); | |||||
logs = test_function(data_handler, iterator); | logs = test_function(data_handler, iterator); | ||||
var end_step = step + data_handler.StepIncrement; | |||||
if (is_val == false) | |||||
callbacks.on_test_batch_end(end_step, logs); | |||||
} | } | ||||
} | } | ||||
var results = new Dictionary<string, float>(); | var results = new Dictionary<string, float>(); | ||||
foreach (var log in logs) | foreach (var log in logs) | ||||
{ | { | ||||
results[log.Item1] = (float)log.Item2; | |||||
results[log.Key] = log.Value; | |||||
} | } | ||||
return results; | return results; | ||||
} | } | ||||
IEnumerable<(string, Tensor)> test_function(DataHandler data_handler, OwnedIterator iterator) | |||||
Dictionary<string, float> test_function(DataHandler data_handler, OwnedIterator iterator) | |||||
{ | { | ||||
var data = iterator.next(); | var data = iterator.next(); | ||||
var outputs = test_step(data_handler, data[0], data[1]); | var outputs = test_step(data_handler, data[0], data[1]); | ||||
tf_with(ops.control_dependencies(new object[0]), ctl => _test_counter.assign_add(1)); | tf_with(ops.control_dependencies(new object[0]), ctl => _test_counter.assign_add(1)); | ||||
return outputs; | return outputs; | ||||
} | } | ||||
List<(string, Tensor)> test_step(DataHandler data_handler, Tensor x, Tensor y) | |||||
Dictionary<string, float> test_step_multi_inputs_function(DataHandler data_handler, OwnedIterator iterator) | |||||
{ | |||||
var data = iterator.next(); | |||||
var x_size = data_handler.DataAdapter.GetDataset().FirstInputTensorCount; | |||||
var outputs = train_step(data_handler, new Tensors(data.Take(x_size)), new Tensors(data.Skip(x_size))); | |||||
tf_with(ops.control_dependencies(new object[0]), ctl => _train_counter.assign_add(1)); | |||||
return outputs; | |||||
} | |||||
Dictionary<string, float> test_step(DataHandler data_handler, Tensor x, Tensor y) | |||||
{ | { | ||||
(x, y) = data_handler.DataAdapter.Expand1d(x, y); | (x, y) = data_handler.DataAdapter.Expand1d(x, y); | ||||
var y_pred = Apply(x, training: false); | var y_pred = Apply(x, training: false); | ||||
@@ -142,7 +200,7 @@ namespace Tensorflow.Keras.Engine | |||||
compiled_metrics.update_state(y, y_pred); | compiled_metrics.update_state(y, y_pred); | ||||
return metrics.Select(x => (x.Name, x.result())).ToList(); | |||||
return metrics.Select(x => (x.Name, x.result())).ToDictionary(x=>x.Item1, x=>(float)x.Item2); | |||||
} | } | ||||
} | } | ||||
} | } |
@@ -22,6 +22,7 @@ namespace Tensorflow.Keras.Engine | |||||
/// <param name="callbacks"></param> | /// <param name="callbacks"></param> | ||||
/// <param name="verbose"></param> | /// <param name="verbose"></param> | ||||
/// <param name="validation_split"></param> | /// <param name="validation_split"></param> | ||||
/// <param name="validation_data"></param> | |||||
/// <param name="shuffle"></param> | /// <param name="shuffle"></param> | ||||
public ICallback fit(NDArray x, NDArray y, | public ICallback fit(NDArray x, NDArray y, | ||||
int batch_size = -1, | int batch_size = -1, | ||||
@@ -29,6 +30,7 @@ namespace Tensorflow.Keras.Engine | |||||
int verbose = 1, | int verbose = 1, | ||||
List<ICallback> callbacks = null, | List<ICallback> callbacks = null, | ||||
float validation_split = 0f, | float validation_split = 0f, | ||||
(NDArray val_x, NDArray val_y)? validation_data = null, | |||||
bool shuffle = true, | bool shuffle = true, | ||||
int initial_epoch = 0, | int initial_epoch = 0, | ||||
int max_queue_size = 10, | int max_queue_size = 10, | ||||
@@ -40,11 +42,17 @@ namespace Tensorflow.Keras.Engine | |||||
throw new InvalidArgumentError( | throw new InvalidArgumentError( | ||||
$"The array x and y should have same value at dim 0, but got {x.dims[0]} and {y.dims[0]}"); | $"The array x and y should have same value at dim 0, but got {x.dims[0]} and {y.dims[0]}"); | ||||
} | } | ||||
int train_count = Convert.ToInt32(x.dims[0] * (1 - validation_split)); | |||||
var train_x = x[new Slice(0, train_count)]; | |||||
var train_y = y[new Slice(0, train_count)]; | |||||
var val_x = x[new Slice(train_count)]; | |||||
var val_y = y[new Slice(train_count)]; | |||||
var train_x = x; | |||||
var train_y = y; | |||||
if (validation_split != 0f && validation_data == null) | |||||
{ | |||||
int train_count = Convert.ToInt32(x.dims[0] * (1 - validation_split)); | |||||
train_x = x[new Slice(0, train_count)]; | |||||
train_y = y[new Slice(0, train_count)]; | |||||
validation_data = (val_x: x[new Slice(train_count)], val_y: y[new Slice(train_count)]); | |||||
} | |||||
var data_handler = new DataHandler(new DataHandlerArgs | var data_handler = new DataHandler(new DataHandlerArgs | ||||
{ | { | ||||
@@ -61,7 +69,7 @@ namespace Tensorflow.Keras.Engine | |||||
StepsPerExecution = _steps_per_execution | StepsPerExecution = _steps_per_execution | ||||
}); | }); | ||||
return FitInternal(data_handler, epochs, verbose, callbackList: callbacks, validation_data: null, | |||||
return FitInternal(data_handler, epochs, verbose, callbackList: callbacks, validation_data: validation_data, | |||||
train_step_func: train_step_function); | train_step_func: train_step_function); | ||||
} | } | ||||
@@ -71,6 +79,7 @@ namespace Tensorflow.Keras.Engine | |||||
int verbose = 1, | int verbose = 1, | ||||
List<ICallback> callbacks = null, | List<ICallback> callbacks = null, | ||||
float validation_split = 0f, | float validation_split = 0f, | ||||
(IEnumerable<NDArray> val_x, NDArray val_y)? validation_data = null, | |||||
bool shuffle = true, | bool shuffle = true, | ||||
int initial_epoch = 0, | int initial_epoch = 0, | ||||
int max_queue_size = 10, | int max_queue_size = 10, | ||||
@@ -85,12 +94,19 @@ namespace Tensorflow.Keras.Engine | |||||
$"The array x and y should have same value at dim 0, but got {tx.dims[0]} and {y.dims[0]}"); | $"The array x and y should have same value at dim 0, but got {tx.dims[0]} and {y.dims[0]}"); | ||||
} | } | ||||
} | } | ||||
int train_count = Convert.ToInt32(y.dims[0] * (1 - validation_split)); | |||||
var train_x = x.Select(x => x[new Slice(0, train_count)] as Tensor); | |||||
var train_y = y[new Slice(0, train_count)]; | |||||
var val_x = x.Select(x => x[new Slice(train_count)] as Tensor); | |||||
var val_y = y[new Slice(train_count)]; | |||||
var train_x = x; | |||||
var train_y = y; | |||||
if (validation_split != 0f && validation_data == null) | |||||
{ | |||||
int train_count = Convert.ToInt32(y.dims[0] * (1 - validation_split)); | |||||
train_x = x.Select(x => x[new Slice(0, train_count)] as NDArray); | |||||
train_y = y[new Slice(0, train_count)]; | |||||
var val_x = x.Select(x => x[new Slice(train_count)] as NDArray); | |||||
var val_y = y[new Slice(train_count)]; | |||||
validation_data = (val_x, val_y); | |||||
} | |||||
var data_handler = new DataHandler(new DataHandlerArgs | var data_handler = new DataHandler(new DataHandlerArgs | ||||
{ | { | ||||
@@ -110,29 +126,30 @@ namespace Tensorflow.Keras.Engine | |||||
if (data_handler.DataAdapter.GetDataset().structure.Length > 2 || | if (data_handler.DataAdapter.GetDataset().structure.Length > 2 || | ||||
data_handler.DataAdapter.GetDataset().FirstInputTensorCount > 1) | data_handler.DataAdapter.GetDataset().FirstInputTensorCount > 1) | ||||
{ | { | ||||
return FitInternal(data_handler, epochs, verbose, callbackList: callbacks, validation_data: null, | |||||
return FitInternal(data_handler, epochs, verbose, callbackList: callbacks, validation_data: validation_data, | |||||
train_step_func: train_step_multi_inputs_function); | train_step_func: train_step_multi_inputs_function); | ||||
} | } | ||||
else | else | ||||
{ | { | ||||
return FitInternal(data_handler, epochs, verbose, callbackList: callbacks, validation_data: null, | |||||
return FitInternal(data_handler, epochs, verbose, callbackList: callbacks, validation_data: validation_data, | |||||
train_step_func: train_step_function); | train_step_func: train_step_function); | ||||
} | } | ||||
} | } | ||||
public History fit(IDatasetV2 dataset, | public History fit(IDatasetV2 dataset, | ||||
IDatasetV2 validation_data = null, | |||||
int batch_size = -1, | int batch_size = -1, | ||||
int epochs = 1, | int epochs = 1, | ||||
int verbose = 1, | int verbose = 1, | ||||
List<ICallback> callbacks = null, | List<ICallback> callbacks = null, | ||||
float validation_split = 0f, | |||||
//float validation_split = 0f, | |||||
IDatasetV2 validation_data = null, | |||||
bool shuffle = true, | bool shuffle = true, | ||||
int initial_epoch = 0, | int initial_epoch = 0, | ||||
int max_queue_size = 10, | int max_queue_size = 10, | ||||
int workers = 1, | int workers = 1, | ||||
bool use_multiprocessing = false) | bool use_multiprocessing = false) | ||||
{ | { | ||||
var data_handler = new DataHandler(new DataHandlerArgs | var data_handler = new DataHandler(new DataHandlerArgs | ||||
{ | { | ||||
Dataset = dataset, | Dataset = dataset, | ||||
@@ -146,7 +163,10 @@ namespace Tensorflow.Keras.Engine | |||||
Model = this, | Model = this, | ||||
StepsPerExecution = _steps_per_execution | StepsPerExecution = _steps_per_execution | ||||
}); | }); | ||||
foreach( var (x,y) in dataset) | |||||
{ | |||||
} | |||||
return FitInternal(data_handler, epochs, verbose, callbacks, validation_data: validation_data, | return FitInternal(data_handler, epochs, verbose, callbacks, validation_data: validation_data, | ||||
train_step_func: train_step_function); | train_step_func: train_step_function); | ||||
} | } | ||||
@@ -178,11 +198,13 @@ namespace Tensorflow.Keras.Engine | |||||
callbacks.on_epoch_begin(epoch); | callbacks.on_epoch_begin(epoch); | ||||
// data_handler.catch_stop_iteration(); | // data_handler.catch_stop_iteration(); | ||||
var logs = new Dictionary<string, float>(); | var logs = new Dictionary<string, float>(); | ||||
long End_step = 0; | |||||
foreach (var step in data_handler.steps()) | foreach (var step in data_handler.steps()) | ||||
{ | { | ||||
callbacks.on_train_batch_begin(step); | callbacks.on_train_batch_begin(step); | ||||
logs = train_step_func(data_handler, iterator); | logs = train_step_func(data_handler, iterator); | ||||
var end_step = step + data_handler.StepIncrement; | var end_step = step + data_handler.StepIncrement; | ||||
End_step = end_step; | |||||
callbacks.on_train_batch_end(end_step, logs); | callbacks.on_train_batch_end(end_step, logs); | ||||
} | } | ||||
@@ -193,6 +215,123 @@ namespace Tensorflow.Keras.Engine | |||||
{ | { | ||||
logs["val_" + log.Key] = log.Value; | logs["val_" + log.Key] = log.Value; | ||||
} | } | ||||
callbacks.on_train_batch_end(End_step, logs); | |||||
} | |||||
callbacks.on_epoch_end(epoch, logs); | |||||
GC.Collect(); | |||||
GC.WaitForPendingFinalizers(); | |||||
} | |||||
return callbacks.History; | |||||
} | |||||
History FitInternal(DataHandler data_handler, int epochs, int verbose, List<ICallback> callbackList, (NDArray, NDArray)? validation_data, | |||||
Func<DataHandler, OwnedIterator, Dictionary<string, float>> train_step_func) | |||||
{ | |||||
stop_training = false; | |||||
_train_counter.assign(0); | |||||
var callbacks = new CallbackList(new CallbackParams | |||||
{ | |||||
Model = this, | |||||
Verbose = verbose, | |||||
Epochs = epochs, | |||||
Steps = data_handler.Inferredsteps | |||||
}); | |||||
if (callbackList != null) | |||||
{ | |||||
foreach (var callback in callbackList) | |||||
callbacks.callbacks.add(callback); | |||||
} | |||||
callbacks.on_train_begin(); | |||||
foreach (var (epoch, iterator) in data_handler.enumerate_epochs()) | |||||
{ | |||||
reset_metrics(); | |||||
callbacks.on_epoch_begin(epoch); | |||||
// data_handler.catch_stop_iteration(); | |||||
var logs = new Dictionary<string, float>(); | |||||
long End_step = 0; | |||||
foreach (var step in data_handler.steps()) | |||||
{ | |||||
callbacks.on_train_batch_begin(step); | |||||
logs = train_step_func(data_handler, iterator); | |||||
var end_step = step + data_handler.StepIncrement; | |||||
End_step = end_step; | |||||
callbacks.on_train_batch_end(end_step, logs); | |||||
} | |||||
if (validation_data != null) | |||||
{ | |||||
// Because evaluate calls call_test_batch_end, this interferes with our output on the screen | |||||
// so we need to pass a is_val parameter to stop on_test_batch_end | |||||
var val_logs = evaluate(validation_data.Value.Item1, validation_data.Value.Item2, is_val:true); | |||||
foreach (var log in val_logs) | |||||
{ | |||||
logs["val_" + log.Key] = log.Value; | |||||
} | |||||
// because after evaluate, logs add some new log which we need to print | |||||
callbacks.on_train_batch_end(End_step, logs); | |||||
} | |||||
callbacks.on_epoch_end(epoch, logs); | |||||
GC.Collect(); | |||||
GC.WaitForPendingFinalizers(); | |||||
} | |||||
return callbacks.History; | |||||
} | |||||
History FitInternal(DataHandler data_handler, int epochs, int verbose, List<ICallback> callbackList, (IEnumerable<Tensor>, NDArray)? validation_data, | |||||
Func<DataHandler, OwnedIterator, Dictionary<string, float>> train_step_func) | |||||
{ | |||||
stop_training = false; | |||||
_train_counter.assign(0); | |||||
var callbacks = new CallbackList(new CallbackParams | |||||
{ | |||||
Model = this, | |||||
Verbose = verbose, | |||||
Epochs = epochs, | |||||
Steps = data_handler.Inferredsteps | |||||
}); | |||||
if (callbackList != null) | |||||
{ | |||||
foreach (var callback in callbackList) | |||||
callbacks.callbacks.add(callback); | |||||
} | |||||
callbacks.on_train_begin(); | |||||
foreach (var (epoch, iterator) in data_handler.enumerate_epochs()) | |||||
{ | |||||
reset_metrics(); | |||||
callbacks.on_epoch_begin(epoch); | |||||
// data_handler.catch_stop_iteration(); | |||||
var logs = new Dictionary<string, float>(); | |||||
long End_step = 0; | |||||
foreach (var step in data_handler.steps()) | |||||
{ | |||||
callbacks.on_train_batch_begin(step); | |||||
logs = train_step_func(data_handler, iterator); | |||||
var end_step = step + data_handler.StepIncrement; | |||||
End_step = end_step; | |||||
callbacks.on_train_batch_end(end_step, logs); | |||||
} | |||||
if (validation_data != null) | |||||
{ | |||||
var val_logs = evaluate(validation_data.Value.Item1, validation_data.Value.Item2); | |||||
foreach (var log in val_logs) | |||||
{ | |||||
logs["val_" + log.Key] = log.Value; | |||||
callbacks.on_train_batch_end(End_step, logs); | |||||
} | |||||
} | } | ||||
callbacks.on_epoch_end(epoch, logs); | callbacks.on_epoch_end(epoch, logs); | ||||