diff --git a/README.md b/README.md index e394d123..be2d2f0f 100644 --- a/README.md +++ b/README.md @@ -131,7 +131,7 @@ using static Tensorflow.KerasApi; using Tensorflow; using Tensorflow.NumPy; -var layers = new LayersApi(); +var layers = keras.layers; // input layer var inputs = keras.Input(shape: (32, 32, 3), name: "img"); // convolutional layer @@ -155,17 +155,19 @@ var model = keras.Model(inputs, outputs, name: "toy_resnet"); model.summary(); // compile keras model in tensorflow static graph model.compile(optimizer: keras.optimizers.RMSprop(1e-3f), - loss: keras.losses.CategoricalCrossentropy(from_logits: true), + loss: keras.losses.SparseCategoricalCrossentropy(from_logits: true), metrics: new[] { "acc" }); // prepare dataset var ((x_train, y_train), (x_test, y_test)) = keras.datasets.cifar10.load_data(); +// normalize the input x_train = x_train / 255.0f; -y_train = np_utils.to_categorical(y_train, 10); // training model.fit(x_train[new Slice(0, 2000)], y_train[new Slice(0, 2000)], - batch_size: 64, - epochs: 10, - validation_split: 0.2f); + batch_size: 64, + epochs: 10, + validation_split: 0.2f); +// save the model +model.save("./toy_resnet_model"); ``` The F# example for linear regression is available [here](docs/Example-fsharp.md). diff --git a/docs/README-CN.md b/docs/README-CN.md index 6fcb5195..47f19482 100644 --- a/docs/README-CN.md +++ b/docs/README-CN.md @@ -130,7 +130,7 @@ using static Tensorflow.KerasApi; using Tensorflow; using Tensorflow.NumPy; -var layers = new LayersApi(); +var layers = keras.layers; // input layer var inputs = keras.Input(shape: (32, 32, 3), name: "img"); // convolutional layer @@ -154,17 +154,19 @@ var model = keras.Model(inputs, outputs, name: "toy_resnet"); model.summary(); // compile keras model in tensorflow static graph model.compile(optimizer: keras.optimizers.RMSprop(1e-3f), - loss: keras.losses.CategoricalCrossentropy(from_logits: true), + loss: keras.losses.SparseCategoricalCrossentropy(from_logits: true), metrics: new[] { "acc" }); // prepare dataset var ((x_train, y_train), (x_test, y_test)) = keras.datasets.cifar10.load_data(); +// normalize the input x_train = x_train / 255.0f; -y_train = np_utils.to_categorical(y_train, 10); // training model.fit(x_train[new Slice(0, 2000)], y_train[new Slice(0, 2000)], - batch_size: 64, - epochs: 10, - validation_split: 0.2f); + batch_size: 64, + epochs: 10, + validation_split: 0.2f); +// save the model +model.save("./toy_resnet_model"); ``` 此外,Tensorflow.NET也支持用F#搭建上述模型进行训练和推理。