|
|
@@ -7,82 +7,92 @@ using static Tensorflow.KerasApi; |
|
|
|
using Tensorflow; |
|
|
|
|
|
|
|
namespace TensorFlowNET.Keras.UnitTest { |
|
|
|
[TestClass] |
|
|
|
public class ActivationTest : EagerModeTestBase { |
|
|
|
[TestMethod] |
|
|
|
public void LeakyReLU () { |
|
|
|
var layer = keras.layers.LeakyReLU(); |
|
|
|
Tensor output = layer.Apply(np.array(-3.0f, -1.0f, 0.0f, 2.0f)); |
|
|
|
Equal(new[] { -0.9f, -0.3f, 0.0f, 2.0f }, output.ToArray<float>()); |
|
|
|
} |
|
|
|
[TestClass] |
|
|
|
public class ActivationTest : EagerModeTestBase |
|
|
|
{ |
|
|
|
[TestMethod] |
|
|
|
public void LeakyReLU() |
|
|
|
{ |
|
|
|
var layer = keras.layers.LeakyReLU(); |
|
|
|
Tensor output = layer.Apply(np.array(-3.0f, -1.0f, 0.0f, 2.0f)); |
|
|
|
Equal(new[] { -0.9f, -0.3f, 0.0f, 2.0f }, output.ToArray<float>()); |
|
|
|
} |
|
|
|
|
|
|
|
[TestMethod] |
|
|
|
public void ELU () { |
|
|
|
Tensors input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); |
|
|
|
Tensor output = keras.layers.ELU().Apply(input); |
|
|
|
NDArray expected = new NDArray(new float[] { -0.0950213f, -0.08646648f, -0.06321206f, 0f, 1f, 2f }); |
|
|
|
Assert.AreEqual(expected.numpy(), output.numpy()); |
|
|
|
} |
|
|
|
[TestMethod] |
|
|
|
public void ELU() |
|
|
|
{ |
|
|
|
Tensors input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); |
|
|
|
Tensor output = keras.layers.ELU().Apply(input); |
|
|
|
NDArray expected = new NDArray(new float[] { -0.0950213f, -0.08646648f, -0.06321206f, 0f, 1f, 2f }); |
|
|
|
Assert.AreEqual(expected.numpy(), output.numpy()); |
|
|
|
} |
|
|
|
|
|
|
|
[TestMethod] |
|
|
|
public void SELU () { |
|
|
|
Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); |
|
|
|
Tensor output = keras.layers.SELU().Apply(input); |
|
|
|
NDArray expected = new NDArray(new float[] { -1.6705688f, -1.5201665f, -1.1113307f, 0f, 1.050701f, 2.101402f }); |
|
|
|
Assert.AreEqual(expected.numpy(), output.numpy()); |
|
|
|
} |
|
|
|
[TestMethod] |
|
|
|
public void SELU() |
|
|
|
{ |
|
|
|
Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); |
|
|
|
Tensor output = keras.layers.SELU().Apply(input); |
|
|
|
NDArray expected = new NDArray(new float[] { -1.6705688f, -1.5201665f, -1.1113307f, 0f, 1.050701f, 2.101402f }); |
|
|
|
Assert.AreEqual(expected.numpy(), output.numpy()); |
|
|
|
} |
|
|
|
|
|
|
|
[TestMethod] |
|
|
|
public void Softmax () { |
|
|
|
Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); |
|
|
|
Tensor output = keras.layers.Softmax(new Axis(-1)).Apply(input); |
|
|
|
NDArray expected = new NDArray(new float[] { 0.0042697787f, 0.011606461f, 0.031549633f, 0.085760795f, 0.23312202f, 0.6336913f }); |
|
|
|
Assert.AreEqual(expected.numpy(), output.numpy()); |
|
|
|
} |
|
|
|
[TestMethod] |
|
|
|
public void Softmax() |
|
|
|
{ |
|
|
|
Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); |
|
|
|
Tensor output = keras.layers.Softmax(new Axis(-1)).Apply(input); |
|
|
|
var expected = new float[] { 0.0042697787f, 0.011606461f, 0.031549633f, 0.085760795f, 0.23312202f, 0.6336913f }; |
|
|
|
Assert.IsTrue(Equal(expected, output.ToArray<float>())); |
|
|
|
} |
|
|
|
|
|
|
|
[TestMethod] |
|
|
|
public void Softplus () { |
|
|
|
Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); |
|
|
|
Tensor output = keras.layers.Softplus().Apply(input); |
|
|
|
NDArray expected = new NDArray(new float[] { 0.04858733f, 0.12692805f, 0.31326166f, 0.6931472f, 1.3132616f, 2.126928f }); |
|
|
|
Assert.AreEqual(expected, output.numpy()); |
|
|
|
} |
|
|
|
[TestMethod] |
|
|
|
public void Softplus() |
|
|
|
{ |
|
|
|
Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); |
|
|
|
Tensor output = keras.layers.Softplus().Apply(input); |
|
|
|
NDArray expected = new NDArray(new float[] { 0.04858733f, 0.12692805f, 0.31326166f, 0.6931472f, 1.3132616f, 2.126928f }); |
|
|
|
Assert.AreEqual(expected, output.numpy()); |
|
|
|
} |
|
|
|
|
|
|
|
[TestMethod] |
|
|
|
public void Softsign () { |
|
|
|
Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); |
|
|
|
Tensor output = keras.layers.Softsign().Apply(input); |
|
|
|
NDArray expected = new NDArray(new float[] { -0.75f, -0.66666667f, -0.5f, 0f, 0.5f, 0.66666667f }); |
|
|
|
Assert.AreEqual(expected, output.numpy()); |
|
|
|
} |
|
|
|
[TestMethod] |
|
|
|
public void Softsign() |
|
|
|
{ |
|
|
|
Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); |
|
|
|
Tensor output = keras.layers.Softsign().Apply(input); |
|
|
|
NDArray expected = new NDArray(new float[] { -0.75f, -0.66666667f, -0.5f, 0f, 0.5f, 0.66666667f }); |
|
|
|
Assert.AreEqual(expected, output.numpy()); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
[TestMethod] |
|
|
|
public void Exponential () { |
|
|
|
Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); |
|
|
|
Tensor output = keras.layers.Exponential().Apply(input); |
|
|
|
NDArray expected = new NDArray(new float[] { 0.049787067f, 0.13533528f, 0.36787945f, 1f, 2.7182817f, 7.389056f }); |
|
|
|
Assert.AreEqual(expected, output.numpy()); |
|
|
|
} |
|
|
|
[TestMethod] |
|
|
|
public void Exponential() |
|
|
|
{ |
|
|
|
Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); |
|
|
|
Tensor output = keras.layers.Exponential().Apply(input); |
|
|
|
var expected = new float[] { 0.049787067f, 0.13533528f, 0.36787945f, 1f, 2.7182817f, 7.389056f }; |
|
|
|
Assert.IsTrue(Equal(expected, output.ToArray<float>())); |
|
|
|
} |
|
|
|
|
|
|
|
[TestMethod] |
|
|
|
public void HardSigmoid () { |
|
|
|
Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); |
|
|
|
Tensor output = keras.layers.HardSigmoid().Apply(input); |
|
|
|
// Note, this should be [0, 0.1, 0.3, 0.5, 0.7, 0.9] |
|
|
|
// But somehow the second element will have 0.099999994 |
|
|
|
// Probably because there is an accuracy loss somewhere |
|
|
|
NDArray expected = new NDArray(new float[] { 0f, 0.099999994f, 0.3f, 0.5f, 0.7f, 0.9f }); |
|
|
|
Assert.AreEqual(expected, output.numpy()); |
|
|
|
} |
|
|
|
[TestMethod] |
|
|
|
public void HardSigmoid() |
|
|
|
{ |
|
|
|
Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); |
|
|
|
Tensor output = keras.layers.HardSigmoid().Apply(input); |
|
|
|
// Note, this should be [0, 0.1, 0.3, 0.5, 0.7, 0.9] |
|
|
|
// But somehow the second element will have 0.099999994 |
|
|
|
// Probably because there is an accuracy loss somewhere |
|
|
|
NDArray expected = new NDArray(new float[] { 0f, 0.099999994f, 0.3f, 0.5f, 0.7f, 0.9f }); |
|
|
|
Assert.AreEqual(expected, output.numpy()); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
[TestMethod] |
|
|
|
public void Swish () { |
|
|
|
Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); |
|
|
|
Tensor output = keras.layers.Swish().Apply(input); |
|
|
|
NDArray expected = new NDArray(new float[] { -0.14227762f, -0.23840584f, -0.26894143f, 0f, 0.7310586f, 1.761594f }); |
|
|
|
Assert.AreEqual(expected, output.numpy()); |
|
|
|
} |
|
|
|
} |
|
|
|
[TestMethod] |
|
|
|
public void Swish() |
|
|
|
{ |
|
|
|
Tensor input = tf.constant(new float[] { -3f, -2f, -1f, 0f, 1f, 2f }); |
|
|
|
Tensor output = keras.layers.Swish().Apply(input); |
|
|
|
NDArray expected = new NDArray(new float[] { -0.14227762f, -0.23840584f, -0.26894143f, 0f, 0.7310586f, 1.761594f }); |
|
|
|
Assert.AreEqual(expected, output.numpy()); |
|
|
|
} |
|
|
|
} |
|
|
|
} |