Browse Source

Regularizer addition and fixes

pull/1248/head
Schoen Tannenbaum 1 year ago
parent
commit
3f65e0d810
9 changed files with 198 additions and 69 deletions
  1. +13
    -4
      src/TensorFlowNET.Core/Keras/Regularizers/IRegularizer.cs
  2. +57
    -0
      src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedRegularizerJsonConverter.cs
  3. +33
    -0
      src/TensorFlowNET.Core/Operations/Regularizers/L1.cs
  4. +48
    -0
      src/TensorFlowNET.Core/Operations/Regularizers/L1L2.cs
  5. +33
    -0
      src/TensorFlowNET.Core/Operations/Regularizers/L2.cs
  6. +14
    -5
      src/TensorFlowNET.Keras/Regularizers.cs
  7. +0
    -19
      src/TensorFlowNET.Keras/Regularizers/L1.cs
  8. +0
    -24
      src/TensorFlowNET.Keras/Regularizers/L1L2.cs
  9. +0
    -17
      src/TensorFlowNET.Keras/Regularizers/L2.cs

+ 13
- 4
src/TensorFlowNET.Core/Keras/Regularizers/IRegularizer.cs View File

@@ -1,7 +1,16 @@
namespace Tensorflow.Keras
using Newtonsoft.Json;
using System.Collections.Generic;
using Tensorflow.Keras.Saving.Common;

namespace Tensorflow.Keras
{
public interface IRegularizer
{
Tensor Apply(RegularizerArgs args);
[JsonConverter(typeof(CustomizedRegularizerJsonConverter))]
public interface IRegularizer
{
[JsonProperty("class_name")]
string ClassName { get; }
[JsonProperty("config")]
IDictionary<string, object> Config { get; }
Tensor Apply(RegularizerArgs args);
}
}

+ 57
- 0
src/TensorFlowNET.Core/Keras/Saving/Json/CustomizedRegularizerJsonConverter.cs View File

@@ -0,0 +1,57 @@
using Newtonsoft.Json.Linq;
using Newtonsoft.Json;
using System;
using System.Collections.Generic;
using System.Text;
using Tensorflow.Operations.Regularizers;

namespace Tensorflow.Keras.Saving.Common
{
class RegularizerInfo
{
public string class_name { get; set; }
public JObject config { get; set; }
}

public class CustomizedRegularizerJsonConverter : JsonConverter
{
public override bool CanConvert(Type objectType)
{
return objectType == typeof(IRegularizer);
}

public override bool CanRead => true;

public override bool CanWrite => true;

public override void WriteJson(JsonWriter writer, object? value, JsonSerializer serializer)
{
var regularizer = value as IRegularizer;
if (regularizer is null)
{
JToken.FromObject(null).WriteTo(writer);
return;
}
JToken.FromObject(new RegularizerInfo()
{
class_name = regularizer.ClassName,
config = JObject.FromObject(regularizer.Config)
}, serializer).WriteTo(writer);
}

public override object? ReadJson(JsonReader reader, Type objectType, object? existingValue, JsonSerializer serializer)
{
var info = serializer.Deserialize<RegularizerInfo>(reader);
if (info is null)
{
return null;
}
return info.class_name switch
{
"L1L2" => new L1L2 (info.config["l1"].ToObject<float>(), info.config["l2"].ToObject<float>()),
"L1" => new L1(info.config["l1"].ToObject<float>()),
"L2" => new L2(info.config["l2"].ToObject<float>()),
};
}
}
}

+ 33
- 0
src/TensorFlowNET.Core/Operations/Regularizers/L1.cs View File

@@ -0,0 +1,33 @@
using System;

using Tensorflow.Keras;

namespace Tensorflow.Operations.Regularizers
{
public class L1 : IRegularizer
{
float _l1;
private readonly Dictionary<string, object> _config;

public string ClassName => "L2";
public virtual IDictionary<string, object> Config => _config;

public L1(float l1 = 0.01f)
{
// l1 = 0.01 if l1 is None else l1
// validate_float_arg(l1, name = "l1")
// self.l1 = ops.convert_to_tensor(l1)
this._l1 = l1;

_config = new();
_config["l1"] = _l1;
}


public Tensor Apply(RegularizerArgs args)
{
//return self.l1 * ops.sum(ops.absolute(x))
return _l1 * math_ops.reduce_sum(math_ops.abs(args.X));
}
}
}

+ 48
- 0
src/TensorFlowNET.Core/Operations/Regularizers/L1L2.cs View File

@@ -0,0 +1,48 @@
using System;

using Tensorflow.Keras;

namespace Tensorflow.Operations.Regularizers
{
public class L1L2 : IRegularizer
{
float _l1;
float _l2;
private readonly Dictionary<string, object> _config;

public string ClassName => "L1L2";
public virtual IDictionary<string, object> Config => _config;

public L1L2(float l1 = 0.0f, float l2 = 0.0f)
{
//l1 = 0.0 if l1 is None else l1
//l2 = 0.0 if l2 is None else l2
// validate_float_arg(l1, name = "l1")
// validate_float_arg(l2, name = "l2")

// self.l1 = l1
// self.l2 = l2
this._l1 = l1;
this._l2 = l2;

_config = new();
_config["l1"] = l1;
_config["l2"] = l2;
}

public Tensor Apply(RegularizerArgs args)
{
//regularization = ops.convert_to_tensor(0.0, dtype = x.dtype)
//if self.l1:
// regularization += self.l1 * ops.sum(ops.absolute(x))
//if self.l2:
// regularization += self.l2 * ops.sum(ops.square(x))
//return regularization

Tensor regularization = tf.constant(0.0, args.X.dtype);
regularization += _l1 * math_ops.reduce_sum(math_ops.abs(args.X));
regularization += _l2 * math_ops.reduce_sum(math_ops.square(args.X));
return regularization;
}
}
}

+ 33
- 0
src/TensorFlowNET.Core/Operations/Regularizers/L2.cs View File

@@ -0,0 +1,33 @@
using System;

using Tensorflow.Keras;

namespace Tensorflow.Operations.Regularizers
{
public class L2 : IRegularizer
{
float _l2;
private readonly Dictionary<string, object> _config;

public string ClassName => "L2";
public virtual IDictionary<string, object> Config => _config;

public L2(float l2 = 0.01f)
{
// l2 = 0.01 if l2 is None else l2
// validate_float_arg(l2, name = "l2")
// self.l2 = l2
this._l2 = l2;

_config = new();
_config["l2"] = _l2;
}


public Tensor Apply(RegularizerArgs args)
{
//return self.l2 * ops.sum(ops.square(x))
return _l2 * math_ops.reduce_sum(math_ops.square(args.X));
}
}
}

+ 14
- 5
src/TensorFlowNET.Keras/Regularizers.cs View File

@@ -1,8 +1,17 @@
namespace Tensorflow.Keras
{
public class Regularizers
{
public IRegularizer l2(float l2 = 0.01f)
=> new L2(l2);
}
public class Regularizers
{
public IRegularizer l1(float l1 = 0.01f)
=> new Tensorflow.Operations.Regularizers.L1(l1);
public IRegularizer l2(float l2 = 0.01f)
=> new Tensorflow.Operations.Regularizers.L2(l2);

//From TF source
//# The default value for l1 and l2 are different from the value in l1_l2
//# for backward compatibility reason. Eg, L1L2(l2=0.1) will only have l2
//# and no l1 penalty.
public IRegularizer l1l2(float l1 = 0.00f, float l2 = 0.00f)
=> new Tensorflow.Operations.Regularizers.L1L2(l1, l2);
}
}

+ 0
- 19
src/TensorFlowNET.Keras/Regularizers/L1.cs View File

@@ -1,19 +0,0 @@
using System;

namespace Tensorflow.Keras
{
public class L1 : IRegularizer
{
float l1;

public L1(float l1 = 0.01f)
{
this.l1 = l1;
}

public Tensor Apply(RegularizerArgs args)
{
return l1 * math_ops.reduce_sum(math_ops.abs(args.X));
}
}
}

+ 0
- 24
src/TensorFlowNET.Keras/Regularizers/L1L2.cs View File

@@ -1,24 +0,0 @@
using System;
using static Tensorflow.Binding;
namespace Tensorflow.Keras
{
public class L1L2 : IRegularizer
{
float l1;
float l2;

public L1L2(float l1 = 0.0f, float l2 = 0.0f)
{
this.l1 = l1;
this.l2 = l2;

}
public Tensor Apply(RegularizerArgs args)
{
Tensor regularization = tf.constant(0.0, args.X.dtype);
regularization += l1 * math_ops.reduce_sum(math_ops.abs(args.X));
regularization += l2 * math_ops.reduce_sum(math_ops.square(args.X));
return regularization;
}
}
}

+ 0
- 17
src/TensorFlowNET.Keras/Regularizers/L2.cs View File

@@ -1,17 +0,0 @@
namespace Tensorflow.Keras
{
public class L2 : IRegularizer
{
float l2;

public L2(float l2 = 0.01f)
{
this.l2 = l2;
}

public Tensor Apply(RegularizerArgs args)
{
return l2 * math_ops.reduce_sum(math_ops.square(args.X));
}
}
}

Loading…
Cancel
Save