@@ -3,16 +3,16 @@ using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Extensions | |||
namespace Tensorflow.Common.Extensions | |||
{ | |||
public static class JObjectExtensions | |||
{ | |||
public static T? TryGetOrReturnNull<T>(this JObject obj, string key) | |||
{ | |||
var res = obj[key]; | |||
if(res is null) | |||
if (res is null) | |||
{ | |||
return default(T); | |||
return default; | |||
} | |||
else | |||
{ |
@@ -0,0 +1,26 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Linq; | |||
using System.Text; | |||
namespace Tensorflow.Common.Extensions | |||
{ | |||
public static class LinqExtensions | |||
{ | |||
#if NETSTANDARD2_0 | |||
public static IEnumerable<T> TakeLast<T>(this IEnumerable<T> sequence, int count) | |||
{ | |||
return sequence.Skip(sequence.Count() - count); | |||
} | |||
public static IEnumerable<T> SkipLast<T>(this IEnumerable<T> sequence, int count) | |||
{ | |||
return sequence.Take(sequence.Count() - count); | |||
} | |||
#endif | |||
public static Tensors ToTensors(this IEnumerable<Tensor> tensors) | |||
{ | |||
return new Tensors(tensors); | |||
} | |||
} | |||
} |
@@ -0,0 +1,79 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Diagnostics; | |||
using System.Text; | |||
namespace Tensorflow.Common.Types | |||
{ | |||
public class GeneralizedTensorShape: IEnumerable<long?[]> | |||
{ | |||
public TensorShapeConfig[] Shapes { get; set; } | |||
/// <summary> | |||
/// create a single-dim generalized Tensor shape. | |||
/// </summary> | |||
/// <param name="dim"></param> | |||
public GeneralizedTensorShape(int dim) | |||
{ | |||
Shapes = new TensorShapeConfig[] { new TensorShapeConfig() { Items = new long?[] { dim } } }; | |||
} | |||
public GeneralizedTensorShape(Shape shape) | |||
{ | |||
Shapes = new TensorShapeConfig[] { shape }; | |||
} | |||
public GeneralizedTensorShape(TensorShapeConfig shape) | |||
{ | |||
Shapes = new TensorShapeConfig[] { shape }; | |||
} | |||
public GeneralizedTensorShape(TensorShapeConfig[] shapes) | |||
{ | |||
Shapes = shapes; | |||
} | |||
public GeneralizedTensorShape(IEnumerable<Shape> shape) | |||
{ | |||
Shapes = shape.Select(x => (TensorShapeConfig)x).ToArray(); | |||
} | |||
public Shape ToSingleShape() | |||
{ | |||
if (Shapes.Length != 1) | |||
{ | |||
throw new ValueError("The generalized shape contains more than 1 dim."); | |||
} | |||
var shape_config = Shapes[0]; | |||
Debug.Assert(shape_config is not null); | |||
return new Shape(shape_config.Items.Select(x => x is null ? -1 : x.Value).ToArray()); | |||
} | |||
public long ToNumber() | |||
{ | |||
if(Shapes.Length != 1 || Shapes[0].Items.Length != 1) | |||
{ | |||
throw new ValueError("The generalized shape contains more than 1 dim."); | |||
} | |||
var res = Shapes[0].Items[0]; | |||
return res is null ? -1 : res.Value; | |||
} | |||
public Shape[] ToShapeArray() | |||
{ | |||
return Shapes.Select(x => new Shape(x.Items.Select(y => y is null ? -1 : y.Value).ToArray())).ToArray(); | |||
} | |||
public IEnumerator<long?[]> GetEnumerator() | |||
{ | |||
foreach (var shape in Shapes) | |||
{ | |||
yield return shape.Items; | |||
} | |||
} | |||
IEnumerator IEnumerable.GetEnumerator() | |||
{ | |||
return GetEnumerator(); | |||
} | |||
} | |||
} |
@@ -0,0 +1,21 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Common.Types | |||
{ | |||
/// <summary> | |||
/// This interface is used when some corresponding python methods have optional args. | |||
/// For example, `Keras.Layer.Apply` generally takes three args as the inputs, while | |||
/// `Keras.Layer.RNN` takes more. Then when calling RNN, you should add `RnnOptionalArgs` | |||
/// as the parameter of the method. | |||
/// </summary> | |||
public interface IOptionalArgs | |||
{ | |||
/// <summary> | |||
/// The identifier of the class. It is not an argument but only something to | |||
/// separate different OptionalArgs. | |||
/// </summary> | |||
string Identifier { get; } | |||
} | |||
} |
@@ -3,7 +3,7 @@ using System; | |||
using System.Collections.Generic; | |||
using System.Linq; | |||
namespace Tensorflow.Keras.Saving | |||
namespace Tensorflow.Common.Types | |||
{ | |||
public class TensorShapeConfig | |||
{ |
@@ -1,17 +1,15 @@ | |||
using Newtonsoft.Json; | |||
using System.Collections.Generic; | |||
using Tensorflow.Keras.Layers.Rnn; | |||
namespace Tensorflow.Keras.ArgsDefinition.Rnn | |||
{ | |||
// TODO(Rinne): add regularizers. | |||
public class RNNArgs : AutoSerializeLayerArgs | |||
{ | |||
public interface IRnnArgCell : ILayer | |||
{ | |||
object state_size { get; } | |||
} | |||
[JsonProperty("cell")] | |||
// TODO: the cell should be serialized with `serialize_keras_object`. | |||
public IRnnArgCell Cell { get; set; } = null; | |||
public IRnnCell Cell { get; set; } = null; | |||
[JsonProperty("return_sequences")] | |||
public bool ReturnSequences { get; set; } = false; | |||
[JsonProperty("return_state")] | |||
@@ -34,6 +32,9 @@ namespace Tensorflow.Keras.ArgsDefinition.Rnn | |||
public IInitializer KernelInitializer { get; set; } | |||
public IInitializer RecurrentInitializer { get; set; } | |||
public IInitializer BiasInitializer { get; set; } | |||
public float Dropout { get; set; } = .0f; | |||
public bool ZeroOutputForMask { get; set; } = false; | |||
public float RecurrentDropout { get; set; } = .0f; | |||
// kernel_regularizer=None, | |||
// recurrent_regularizer=None, | |||
@@ -0,0 +1,14 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.ArgsDefinition.Rnn | |||
{ | |||
public class RnnOptionalArgs: IOptionalArgs | |||
{ | |||
public string Identifier => "Rnn"; | |||
public Tensor Mask { get; set; } = null; | |||
public Tensors Constants { get; set; } = null; | |||
} | |||
} |
@@ -0,0 +1,29 @@ | |||
using Newtonsoft.Json; | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras.ArgsDefinition.Rnn | |||
{ | |||
public class SimpleRNNCellArgs: AutoSerializeLayerArgs | |||
{ | |||
[JsonProperty("units")] | |||
public int Units { get; set; } | |||
// TODO(Rinne): lack of initialized value of Activation. Merging keras | |||
// into tf.net could resolve it. | |||
[JsonProperty("activation")] | |||
public Activation Activation { get; set; } | |||
[JsonProperty("use_bias")] | |||
public bool UseBias { get; set; } = true; | |||
[JsonProperty("dropout")] | |||
public float Dropout { get; set; } = .0f; | |||
[JsonProperty("recurrent_dropout")] | |||
public float RecurrentDropout { get; set; } = .0f; | |||
[JsonProperty("kernel_initializer")] | |||
public IInitializer KernelInitializer { get; set; } | |||
[JsonProperty("recurrent_initializer")] | |||
public IInitializer RecurrentInitializer { get; set; } | |||
[JsonProperty("bias_initializer")] | |||
public IInitializer BiasInitializer { get; set; } | |||
} | |||
} |
@@ -1,4 +1,5 @@ | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Saving; | |||
using Tensorflow.NumPy; | |||
using Tensorflow.Training; | |||
@@ -14,7 +15,7 @@ namespace Tensorflow.Keras | |||
List<ILayer> Layers { get; } | |||
List<INode> InboundNodes { get; } | |||
List<INode> OutboundNodes { get; } | |||
Tensors Apply(Tensors inputs, Tensor state = null, bool training = false); | |||
Tensors Apply(Tensors inputs, Tensors states = null, bool training = false, IOptionalArgs? optional_args = null); | |||
List<IVariableV1> TrainableVariables { get; } | |||
List<IVariableV1> TrainableWeights { get; } | |||
List<IVariableV1> NonTrainableWeights { get; } | |||
@@ -0,0 +1,19 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
public interface IRnnCell: ILayer | |||
{ | |||
GeneralizedTensorShape StateSize { get; } | |||
GeneralizedTensorShape OutputSize { get; } | |||
/// <summary> | |||
/// Whether the optional RNN args are supported when appying the layer. | |||
/// In other words, whether `Apply` is overwrited with process of `RnnOptionalArgs`. | |||
/// </summary> | |||
bool SupportOptionalArgs { get; } | |||
(Tensor, Tensors) Call(Tensors inputs, Tensors states, bool? training = null); | |||
} | |||
} |
@@ -0,0 +1,12 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
public interface IStackedRnnCells : IRnnCell | |||
{ | |||
int Count { get; } | |||
IRnnCell this[int idx] { get; } | |||
} | |||
} |
@@ -3,6 +3,7 @@ using Newtonsoft.Json; | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Saving.Json | |||
{ | |||
@@ -6,6 +6,7 @@ using System.Text; | |||
using System.Diagnostics; | |||
using OneOf.Types; | |||
using Tensorflow.Keras.Saving.Json; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Saving | |||
{ | |||
@@ -74,8 +74,3 @@ namespace Tensorflow | |||
=> IsScalar ? $"{axis[0]}" : $"({string.Join(", ", axis)})"; | |||
} | |||
} | |||
namespace System.Runtime.CompilerServices | |||
{ | |||
internal static class IsExternalInit { } | |||
} |
@@ -53,7 +53,7 @@ public class Orthogonal : IInitializer | |||
// Compute the qr factorization | |||
var (q, r) = tf.linalg.qr(a, full_matrices: false); | |||
// Make Q uniform | |||
var d = tf.linalg.tensor_diag_part(r); | |||
var d = tf.linalg.tensor_diag_part(r.Single); | |||
q *= tf.sign(d); | |||
if (num_rows < num_cols) | |||
@@ -11,6 +11,7 @@ namespace Tensorflow | |||
/// Basic LSTM recurrent network cell. | |||
/// The implementation is based on: http://arxiv.org/abs/1409.2329. | |||
/// </summary> | |||
[Obsolete("This is an incompleted tf v1 api, pleas use keras RNNs instead.")] | |||
public class BasicLstmCell : LayerRnnCell | |||
{ | |||
int _num_units; | |||
@@ -20,6 +20,7 @@ using static Tensorflow.Binding; | |||
namespace Tensorflow | |||
{ | |||
[Obsolete("This is an incompleted tf v1 api, pleas use keras RNNs instead.")] | |||
public class BasicRnnCell : LayerRnnCell | |||
{ | |||
int _num_units; | |||
@@ -19,6 +19,7 @@ using static Tensorflow.Binding; | |||
namespace Tensorflow | |||
{ | |||
[Obsolete("This is an incompleted tf v1 api, pleas use keras RNNs instead.")] | |||
public class LayerRnnCell : RnnCell | |||
{ | |||
protected InputSpec inputSpec; | |||
@@ -16,10 +16,12 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Keras; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.ArgsDefinition.Rnn; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Layers.Rnn; | |||
using Tensorflow.Keras.Saving; | |||
using Tensorflow.NumPy; | |||
using Tensorflow.Operations; | |||
@@ -50,7 +52,8 @@ namespace Tensorflow | |||
/// matching structure of Tensors having shape `[batch_size].concatenate(s)` | |||
/// for each `s` in `self.batch_size`. | |||
/// </summary> | |||
public abstract class RnnCell : ILayer, RNNArgs.IRnnArgCell | |||
[Obsolete("This is an incompleted tf v1 api, pleas use keras RNNs instead.")] | |||
public abstract class RnnCell : ILayer, IRnnCell | |||
{ | |||
/// <summary> | |||
/// Attribute that indicates whether the cell is a TF RNN cell, due the slight | |||
@@ -142,7 +145,7 @@ namespace Tensorflow | |||
throw new NotImplementedException("_zero_state_tensors"); | |||
} | |||
public Tensors Apply(Tensors inputs, Tensor state = null, bool is_training = false) | |||
public Tensors Apply(Tensors inputs, Tensors state = null, bool is_training = false, IOptionalArgs? optional_args = null) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
@@ -173,5 +176,13 @@ namespace Tensorflow | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public (Tensor, Tensors) Call(Tensors inputs, Tensors states, bool? training = null) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public GeneralizedTensorShape StateSize => throw new NotImplementedException(); | |||
public GeneralizedTensorShape OutputSize => throw new NotImplementedException(); | |||
public bool SupportOptionalArgs => throw new NotImplementedException(); | |||
} | |||
} |
@@ -30,7 +30,7 @@ namespace Tensorflow | |||
name: name); | |||
return tf.Context.ExecuteOp("PrintV2", name, new ExecuteOpArgs(formatted_string) | |||
.SetAttributes(new { output_stream, end })); | |||
.SetAttributes(new { output_stream, end })).SingleOrNull; | |||
} | |||
} | |||
} |
@@ -44,7 +44,7 @@ namespace Tensorflow | |||
{ | |||
sorted = true | |||
})); | |||
return indices; | |||
return indices.Single; | |||
} | |||
public static Tensor sort(Tensor values, Axis axis, string direction = "ASCENDING", string? name = null) | |||
@@ -114,4 +114,9 @@ https://tensorflownet.readthedocs.io</Description> | |||
<PackageReference Include="Protobuf.Text" Version="0.7.0" /> | |||
<PackageReference Include="Serilog.Sinks.Console" Version="4.1.0" /> | |||
</ItemGroup> | |||
<ItemGroup Condition="'$(TargetFramework)' == 'netstandard2.0'"> | |||
<PackageReference Include="IsExternalInit" Version="1.0.3" PrivateAssets="all" /> | |||
<PackageReference Include="System.Memory" Version="4.5.4" PrivateAssets="all" /> | |||
</ItemGroup> | |||
</Project> |
@@ -23,6 +23,38 @@ namespace Tensorflow | |||
public Graph graph => items.First().graph; | |||
public bool IsList { get; set; } | |||
public int Length => items.Count(); | |||
/// <summary> | |||
/// Return a Tensor if `Tensors` has only one tensor, otherwise throw an exception. | |||
/// </summary> | |||
public Tensor Single | |||
{ | |||
get | |||
{ | |||
if (Length != 1) | |||
{ | |||
throw new ValueError("Tensors with more than one tensor cannot be " + | |||
"implicitly converted to Tensor."); | |||
} | |||
return items.First(); | |||
} | |||
} | |||
/// <summary> | |||
/// Return a Tensor if `Tensors` has only one tensor, and return null when `Tensors` is empty, | |||
/// otherwise throw an exception. | |||
/// </summary> | |||
public Tensor? SingleOrNull | |||
{ | |||
get | |||
{ | |||
if (Length > 1) | |||
{ | |||
throw new ValueError($"Tensors with {Length} tensor cannot be " + | |||
"implicitly converted to Tensor."); | |||
} | |||
return items.FirstOrDefault(); | |||
} | |||
} | |||
public Tensor this[int index] | |||
{ | |||
@@ -183,18 +215,18 @@ namespace Tensorflow | |||
public static implicit operator Tensors(List<Tensor> tensors) | |||
=> new Tensors(tensors.ToArray()); | |||
public static implicit operator Tensor(Tensors tensors) | |||
=> tensors.FirstOrDefault(); | |||
public static implicit operator Tensor(Tensors? tensors) | |||
=> tensors?.SingleOrNull; | |||
public static implicit operator Tensor[](Tensors tensors) | |||
=> tensors.items.ToArray(); | |||
#endregion | |||
public void Deconstruct(out Tensor a, out Tensor b) | |||
public void Deconstruct(out Tensor a, out Tensors? b) | |||
{ | |||
a = items[0]; | |||
b = items[1]; | |||
b = Length == 1? null : new Tensors(items.Skip(1)); | |||
} | |||
private static void EnsureSingleTensor(Tensors tensors, string methodnName) | |||
@@ -170,6 +170,39 @@ namespace Tensorflow.Util | |||
throw new TypeError("Type of sequence not supported (yet): " + instance.GetType()); | |||
} | |||
public static bool is_nested(object obj) | |||
{ | |||
// Refer to https://www.tensorflow.org/api_docs/python/tf/nest | |||
//if (obj is IList || obj is IDictionary || obj is ITuple) | |||
// return true; | |||
if (obj is IList || obj is IDictionary) | |||
return true; | |||
if (obj is NDArray || obj is Tensor || obj is string || obj.GetType().IsGenericType | |||
|| obj is ISet<int> || obj is ISet<float> || obj is ISet<double>) | |||
return false; | |||
if (obj.GetType().IsNested) return true; | |||
// Check if the object is an IEnumerable | |||
if (obj is IEnumerable) | |||
{ | |||
// If it is, check if it is a nested structure | |||
foreach (object item in (IEnumerable)obj) | |||
{ | |||
if (is_nested(item)) | |||
{ | |||
return true; | |||
} | |||
} | |||
return true; | |||
} | |||
else | |||
{ | |||
// If it is not, return false | |||
return false; | |||
} | |||
} | |||
/// <summary> | |||
/// Yields the next value from the given iterable. | |||
/// </summary> | |||
@@ -22,6 +22,7 @@ using Tensorflow.Functions; | |||
using Tensorflow.Graphs; | |||
using static Tensorflow.Binding; | |||
using static Tensorflow.Graphs.SubGraphUtility; | |||
using Tensorflow.Util; | |||
namespace Tensorflow.Keras | |||
{ | |||
@@ -450,5 +451,514 @@ namespace Tensorflow.Keras | |||
return x; | |||
} | |||
public static (Tensors, Tensors, Tensors) rnn( | |||
Func<Tensors, Tensors, (Tensors, Tensors)> step_function, // args:inputs, states, return:output, new_states | |||
Tensors inputs, // inputs is a tuple of tensors (one per input sequence) | |||
Tensors initial_states, | |||
bool go_backwards = false, | |||
Tensor? mask = null, | |||
Tensors? constants = null, | |||
bool unroll = false, | |||
Tensors? input_length = null, // An integer or a 1-D Tensor,depending on whether the time dimension is fixed-length or not | |||
bool time_major = false, | |||
bool zero_output_for_mask = false, | |||
bool return_all_outputs = true) | |||
{ | |||
Tensors swap_batch_timestep(Tensors input_t) | |||
{ | |||
var axes = Enumerable.Range(0, input_t.rank).ToArray(); | |||
axes[0] = 1; | |||
axes[1] = 0; | |||
return tf.transpose(input_t, axes); | |||
} | |||
if (!time_major) | |||
{ | |||
inputs = nest.map_structure(swap_batch_timestep, inputs); | |||
} | |||
var flatted_inptus = nest.flatten(inputs); | |||
var time_steps = flatted_inptus[0].shape[0]; | |||
var batch = flatted_inptus[0].shape[1]; | |||
var time_step_t = tf.shape(flatted_inptus[0])[0]; | |||
foreach (var input_ in flatted_inptus) | |||
{ | |||
input_.shape.with_rank_at_least(3); | |||
} | |||
if (mask != null) | |||
{ | |||
if (mask.dtype != TF_DataType.TF_BOOL) | |||
{ | |||
mask = tf.cast(mask, TF_DataType.TF_BOOL); | |||
} | |||
if (mask.rank == 2) | |||
{ | |||
mask = tf.expand_dims(mask, -1); | |||
} | |||
if (!time_major) | |||
{ | |||
mask = swap_batch_timestep(mask); | |||
} | |||
} | |||
if (constants == null) | |||
{ | |||
constants = new List<Tensor>(); | |||
} | |||
// tf.where needs its condition tensor to be the same shape as its two | |||
// result tensors, but in our case the condition (mask) tensor is | |||
// (nsamples, 1), and inputs are (nsamples, ndimensions) or even more. | |||
// So we need to broadcast the mask to match the shape of inputs. | |||
// That's what the tile call does, it just repeats the mask along its | |||
// second dimension n times. | |||
Tensors _expand_mask(Tensors mask_t, Tensors input_t, int fixed_dim = 1) | |||
{ | |||
if (nest.is_nested(mask_t)) | |||
{ | |||
throw new ValueError($"mask_t is expected to be tensor, but got {mask_t}"); | |||
} | |||
if (nest.is_nested(input_t)) | |||
{ | |||
throw new ValueError($"input_t is expected to be tensor, but got {input_t}"); | |||
} | |||
var rank_diff = input_t.rank - mask_t.rank; | |||
for (int i = 0; i < rank_diff; i++) | |||
{ | |||
mask_t = tf.expand_dims(mask_t, -1); | |||
} | |||
var multiples = Enumerable.Repeat(1, fixed_dim).ToArray().concat(input_t.shape.as_int_list().ToList().GetRange(fixed_dim, input_t.rank)); | |||
return tf.tile(mask_t, multiples); | |||
} | |||
Tensors outputs = new Tensors(); | |||
Tensors output_time_zero = new Tensors(); | |||
Tensors last_output = new Tensors(); | |||
Tensors new_states = new Tensors(); | |||
if (unroll) | |||
{ | |||
if (time_steps == 0) | |||
{ | |||
throw new ValueError("Unrolling requires a fixed number of timesteps."); | |||
} | |||
// Process the input tensors. The input tensor need to be split on the | |||
// time_step dim, and reverse if go_backwards is True. In the case of | |||
// nested input, the input is flattened and then transformed | |||
// individually. The result of this will be a tuple of lists, each of | |||
// the item in tuple is list of the tensor with shape (batch, feature) | |||
// TODO(Wanglongzhi2001),step_func接受的第二个参数为List,但是最后却用的tuple | |||
//var states = Tuple.Create(initial_states); | |||
var states = initial_states; | |||
var successive_states = new Tensors(); | |||
var successive_outputs = new Tensors(); | |||
// Process the input tensors. The input tensor need to be split on the | |||
// time_step dim, and reverse if go_backwards is True. In the case of | |||
// nested input, the input is flattened and then transformed | |||
// individually. The result of this will be a tuple of lists, each of | |||
// the item in tuple is list of the tensor with shape (batch, feature) | |||
Tensors _process_single_input_t(Tensors input_t) | |||
{ | |||
input_t = tf.unstack(input_t); // unstack for time_step dim | |||
if (go_backwards) | |||
{ | |||
input_t.Reverse(); | |||
} | |||
return input_t; | |||
} | |||
// TODO(Wanglongzhi2001) | |||
Tensors processed_input; | |||
if (nest.is_nested(inputs)) | |||
{ | |||
processed_input = nest.map_structure(_process_single_input_t, inputs); | |||
} | |||
else | |||
{ | |||
processed_input = _process_single_input_t(inputs); | |||
} | |||
object _get_input_tensor(int time) | |||
{ | |||
List<Tensor> inp = new List<Tensor>(); | |||
foreach (var t_ in processed_input) | |||
{ | |||
inp.Add(t_[time]); | |||
} | |||
return nest.pack_sequence_as(inputs, inp); | |||
} | |||
//if (mask != null) | |||
//{ | |||
// var mask_list = tf.unstack(mask); | |||
// if (go_backwards) | |||
// { | |||
// mask_list.Reverse(); | |||
// } | |||
// for (int i = 0; i < time_steps; i++) | |||
// { | |||
// // TODO(Wanglongzhi2001),deal with _get_input_tensor | |||
// var inp = _get_input_tensor(i); | |||
// var mask_t = mask_list[i]; | |||
// // TODO | |||
// var (output, newStates) = step_function((Tensors)inp, new Tensors { states, constants }); | |||
// var tiled_mask_t = _expand_mask(mask_t, output); | |||
// Tensors prev_output; | |||
// if (successive_outputs == null) | |||
// { | |||
// prev_output = tf.zeros_like(output); | |||
// } | |||
// else | |||
// { | |||
// prev_output = successive_outputs[successive_outputs.Length - 1]; | |||
// } | |||
// output = tf.where(tiled_mask_t, output, prev_output); | |||
// //var flat_states = nest.flatten(states); | |||
// //var flat_new_states = nest.flatten(newStates); | |||
// var flat_states = states.ToList(); | |||
// var flat_new_states = newStates.ToList(); | |||
// var tiledMaskT = flat_states | |||
// .Select(s => _expand_mask(mask_t, s)) | |||
// .ToArray(); | |||
// var tuple = Tuple.Create(tiledMaskT); | |||
// List<Tensor> flat_final_states = new List<Tensor>(); | |||
// foreach (var (m, s, ps) in Enumerable.Zip(tiled_mask_t, flat_new_states, flat_states)) | |||
// { | |||
// flat_final_states.Add(tf.where(m, s, ps)); | |||
// } | |||
// states = (Tensors)nest.pack_sequence_as(states, flat_final_states); | |||
// if (return_all_outputs) | |||
// { | |||
// successive_outputs.Add(output); | |||
// successive_states.Add(states); | |||
// } | |||
// else | |||
// { | |||
// successive_outputs = new Tensors { output }; | |||
// successive_states = new Tensors { states }; | |||
// } | |||
// } | |||
// last_output = successive_outputs[successive_outputs.Length - 1]; | |||
// new_states = successive_states[successive_states.Length - 1]; | |||
// outputs = tf.stack(successive_outputs); | |||
// if (zero_output_for_mask) | |||
// { | |||
// last_output = tf.where(_expand_mask(mask_list[mask_list.Length - 1], last_output), last_output, tf.zeros_like(last_output)); | |||
// outputs = tf.where(_expand_mask(mask, outputs, fixed_dim: 2), outputs, tf.zeros_like(outputs)); | |||
// } | |||
// else // mask is null | |||
// { | |||
// for (int i = 0; i < time_steps; i++) | |||
// { | |||
// var inp = _get_input_tensor(i); | |||
// var (output, newStates) = step_function((Tensors)inp, new Tensors { states, constants }); | |||
// states = newStates; | |||
// if (return_all_outputs) | |||
// { | |||
// successive_outputs.Add(output); | |||
// successive_states.Add(newStates); | |||
// } | |||
// else | |||
// { | |||
// successive_outputs = new Tensors { output }; | |||
// successive_states = new Tensors { newStates }; | |||
// } | |||
// } | |||
// last_output = successive_outputs[successive_outputs.Length - 1]; | |||
// new_states = successive_states[successive_states.Length - 1]; | |||
// outputs = tf.stack(successive_outputs); | |||
// } | |||
//} | |||
} | |||
//else // unroll == false | |||
//{ | |||
// var states = initial_states; | |||
// // Create input tensor array, if the inputs is nested tensors, then it | |||
// // will be flattened first, and tensor array will be created one per | |||
// // flattened tensor. | |||
// var input_ta = new List<TensorArray>(); | |||
// for (int i = 0; i < flatted_inptus.Count; i++) | |||
// { | |||
// input_ta.Add(tf.TensorArray(dtype: flatted_inptus[i].dtype, size: time_step_t)); | |||
// } | |||
// // Get the time(0) input and compute the output for that, the output will | |||
// // be used to determine the dtype of output tensor array. Don't read from | |||
// // input_ta due to TensorArray clear_after_read default to True. | |||
// var inps = new Tensors(); | |||
// foreach (var inp in flatted_inptus) | |||
// { | |||
// inps.Add(inp[0]); | |||
// } | |||
// var input_time_zero = nest.pack_sequence_as(inputs, inps); | |||
// // output_time_zero is used to determine the cell output shape and its | |||
// // dtype. the value is discarded. | |||
// (output_time_zero, _) = step_function((Tensor)input_time_zero, new Tensors { initial_states, constants }); | |||
// var output_ta_size = return_all_outputs ? time_step_t : tf.constant(1); | |||
// var output_ta = new List<TensorArray>(); | |||
// for (int i = 0; i < output_time_zero.ToList().Count; i++) | |||
// { | |||
// var Out = output_time_zero.ToList()[i]; | |||
// output_ta.Add(tf.TensorArray(dtype: Out.dtype, size: output_ta_size, element_shape: Out.shape)); | |||
// } | |||
// var time = tf.constant(0, dtype: TF_DataType.TF_INT32, name: "time"); | |||
// Func<Tensor, Tensor>? masking_fn; | |||
// Func<Tensors, Tensors, Tensors, Tensors>? compute_masked_output = null; | |||
// if (mask != null) | |||
// { | |||
// if (go_backwards) | |||
// { | |||
// mask = tf.reverse(mask, axis: new[] { 0 }); | |||
// } | |||
// var mask_ta = tf.TensorArray(dtype: TF_DataType.TF_BOOL, size: time_step_t); | |||
// mask_ta = mask_ta.unstack(mask); | |||
// masking_fn = (time) => | |||
// { | |||
// return mask_ta.read(time); | |||
// }; | |||
// compute_masked_output = (mask_t, flat_out, flat_mask) => | |||
// { | |||
// var tiled_mask_t = new Tensors(); | |||
// foreach (var o in flat_out) | |||
// { | |||
// tiled_mask_t.Add(_expand_mask(mask_t, o, fixed_dim: mask_t.rank)); | |||
// } | |||
// Tensors res = new Tensors(); | |||
// foreach (var (m, o, fm) in Enumerable.Zip(tiled_mask_t, flat_out, flat_mask)) | |||
// { | |||
// res.Add(tf.where(m, o, fm)); | |||
// } | |||
// return res; | |||
// }; | |||
// } | |||
// // TODO(Wanglongzhi2001), what the input_length's type should be(an integer or a single tensor)? | |||
// else if (input_length is Tensor) | |||
// { | |||
// if (go_backwards) | |||
// { | |||
// var max_len = tf.reduce_max(input_length, axis: 0); | |||
// var rev_input_length = tf.subtract(max_len - 1, input_length); | |||
// masking_fn = (time) => | |||
// { | |||
// return tf.less(rev_input_length, time); | |||
// }; | |||
// } | |||
// else | |||
// { | |||
// masking_fn = (time) => | |||
// { | |||
// return tf.greater(input_length, time); | |||
// }; | |||
// } | |||
// compute_masked_output = (mask_t, flat_out, flat_mask) => | |||
// { | |||
// var res = new List<Tensor>(); | |||
// foreach (var (o, zo) in zip(flat_out, flat_mask)) | |||
// { | |||
// res.Add(tf.where(mask_t, o, zo)); | |||
// } | |||
// return res; | |||
// }; | |||
// } | |||
// else | |||
// { | |||
// masking_fn = null; | |||
// } | |||
// if (masking_fn != null) | |||
// { | |||
// // Mask for the T output will be base on the output of T - 1. In the | |||
// // case T = 0, a zero filled tensor will be used. | |||
// var flat_zero_output = new Tensors(); | |||
// foreach (var o in nest.flatten(output_time_zero)) | |||
// { | |||
// flat_zero_output.Add(tf.zeros_like(o)); | |||
// } | |||
// (Tensor, List<TensorArray>, Tensors, Tensors) _step(Tensor time, List<TensorArray> output_ta_t, Tensors prev_output, Tensors states) | |||
// { | |||
// /* | |||
// RNN step function. | |||
// Args: | |||
// time: Current timestep value. | |||
// output_ta_t: TensorArray. | |||
// prev_output: tuple of outputs from time - 1. | |||
// *states: List of states. | |||
// Returns: | |||
// Tuple(todo): `(time + 1, output_ta_t, output) + tuple(new_states)` | |||
// */ | |||
// var current_input = input_ta.Select(x => x.read(time)).ToList(); | |||
// // maybe set shape | |||
// // TODO(Wanglongzhi2001),deal with nest.pack_sequence_as's return type | |||
// current_input = (List<Tensor>)nest.pack_sequence_as(inputs, current_input); | |||
// var mask_t = masking_fn(time); | |||
// var (output, new_states) = step_function(current_input, new Tensors { states, constants }); | |||
// // mask output | |||
// //var flat_output = nest.flatten(output); | |||
// var flat_output = output.ToList(); | |||
// var flat_mask_output = zero_output_for_mask ? flat_zero_output : prev_output.ToList(); | |||
// // TODO(Wanglongzhi2001),deal with compute_masked_output's third parameter's type | |||
// var flat_new_output = compute_masked_output(mask_t, flat_output, flat_mask_output); | |||
// // mask states | |||
// var flat_state = states.ToList(); | |||
// var flat_new_state = new_states.ToList(); | |||
// foreach (var (state, new_state) in zip(flat_state, flat_new_state)) | |||
// { | |||
// if (new_state is Tensor) | |||
// { | |||
// new_state.set_shape(state.shape); | |||
// } | |||
// } | |||
// var flat_final_state = compute_masked_output(mask_t, flat_new_state, flat_state); | |||
// new_states = (Tensors)nest.pack_sequence_as(new_states, flat_final_state); | |||
// var ta_index_to_write = return_all_outputs ? time : tf.constant(0); | |||
// var Output_ta_t = new List<TensorArray>(); | |||
// // TODO(Wanglongzhi2001),deal with zip output_ta_t | |||
// foreach (var (ta, Out) in zip(output_ta_t, flat_new_output)) | |||
// { | |||
// Output_ta_t.Add(ta.write(ta_index_to_write, Out)); | |||
// } | |||
// //new_states = (Tensors)nest.pack_sequence_as(initial_states, flat_new_state); | |||
// return (time + 1, Output_ta_t, flat_new_output, new_states); | |||
// } | |||
// Func<Tensor, Tensor> cond = (time) => (time < time_step_t); | |||
// var final_outputs = tf.while_loop(cond: cond, body: _step, loop_vars: (time, output_ta, flat_zero_output, states)); | |||
// new_states = final_outputs.Item4; | |||
// output_ta = final_outputs.Item2; | |||
// } | |||
// else | |||
// { | |||
// (Tensor, List<TensorArray>, Tensors) _step(Tensor time, List<TensorArray> output_ta_t, Tensors states) | |||
// { | |||
// var current_input = input_ta.Select(x => x.read(time)).ToList(); | |||
// // maybe set shape | |||
// // TODO(Wanglongzhi2001),deal with nest.pack_sequence_as's return type | |||
// current_input = (List<Tensor>)nest.pack_sequence_as(inputs, current_input); | |||
// var (output, new_states) = step_function(current_input, new Tensors { states, constants }); | |||
// var flat_state = states.ToList(); | |||
// var flat_new_state = new_states.ToList(); | |||
// foreach (var (state, new_state) in zip(flat_state, flat_new_state)) | |||
// { | |||
// if (new_state is Tensor) | |||
// { | |||
// new_state.set_shape(state.shape); | |||
// } | |||
// } | |||
// var flat_output = output.ToList(); | |||
// var ta_index_to_write = return_all_outputs ? time : tf.constant(0); | |||
// var Output_ta_t = new List<TensorArray>(); | |||
// foreach (var (ta, out_) in zip(output_ta_t, flat_output)) | |||
// { | |||
// Output_ta_t.Add(ta.write(ta_index_to_write, out_)); | |||
// } | |||
// new_states = (Tensors)nest.pack_sequence_as(initial_states, flat_new_state); | |||
// return (time + 1, Output_ta_t, new_states); | |||
// } | |||
// Func<Tensor, Tensor> cond = (time) => (time < time_step_t); | |||
// var final_outputs = tf.while_loop(cond: cond, body: _step, loop_vars: (time, output_ta, states)); | |||
// new_states = final_outputs.Item3; | |||
// output_ta = final_outputs.Item2; | |||
// } | |||
// //Tensors outputs = new Tensors(); | |||
// foreach (var o in output_ta) | |||
// { | |||
// outputs.Add(o.stack()); | |||
// } | |||
// foreach (var o in outputs) | |||
// { | |||
// last_output.Add(o[-1]); | |||
// } | |||
// outputs = (Tensors)nest.pack_sequence_as(output_time_zero, outputs); | |||
// last_output = (Tensors)nest.pack_sequence_as(output_time_zero, last_output); | |||
//} | |||
Func<Tensor, Tensor> set_shape; | |||
set_shape = (output_) => | |||
{ | |||
if (output_ is Tensor) | |||
{ | |||
var shape = output_.shape.as_int_list(); | |||
if (return_all_outputs) | |||
{ | |||
shape[0] = (int)time_steps; | |||
} | |||
else | |||
{ | |||
shape[0] = 1; | |||
} | |||
shape[1] = (int)batch; | |||
output_.set_shape(new Tensor(shape)); | |||
} | |||
return output_; | |||
}; | |||
var Outputs = (Tensors)nest.map_structure(set_shape, outputs); | |||
if (!time_major) | |||
{ | |||
Outputs = nest.map_structure(swap_batch_timestep, outputs); | |||
} | |||
return (last_output, Outputs, new_states); | |||
} | |||
} | |||
} |
@@ -1,6 +1,7 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Linq; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Saving.SavedModel; | |||
using Tensorflow.Keras.Utils; | |||
@@ -81,7 +82,7 @@ namespace Tensorflow.Keras.Engine | |||
} | |||
else | |||
{ | |||
_buildInputShape = new Saving.TensorShapeConfig(); | |||
_buildInputShape = new TensorShapeConfig(); | |||
} | |||
if (outputs.Any(x => x.KerasHistory == null)) | |||
@@ -325,7 +326,7 @@ namespace Tensorflow.Keras.Engine | |||
nodes_in_decreasing_depth.append(node); | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
var tensor_dict = new Dictionary<long, Queue<Tensor>>(); | |||
// map input values | |||
@@ -1,4 +1,5 @@ | |||
using System.Threading; | |||
using Tensorflow.Common.Types; | |||
using static Tensorflow.Binding; | |||
namespace Tensorflow.Keras.Engine | |||
@@ -8,11 +9,11 @@ namespace Tensorflow.Keras.Engine | |||
/// <summary> | |||
/// Wraps `call`, applying pre- and post-processing steps. | |||
/// </summary> | |||
/// <param name="input"></param> | |||
/// <param name="inputs"></param> | |||
/// <param name="state"></param> | |||
/// <param name="training"></param> | |||
/// <returns></returns> | |||
public Tensors Apply(Tensors inputs, Tensor state = null, bool training = false) | |||
public virtual Tensors Apply(Tensors inputs, Tensors states = null, bool training = false, IOptionalArgs? optional_args = null) | |||
{ | |||
if (callContext.Value == null) | |||
callContext.Value = new CallContext(); | |||
@@ -30,7 +31,7 @@ namespace Tensorflow.Keras.Engine | |||
if (!built) | |||
MaybeBuild(inputs); | |||
var outputs = Call(inputs, state: state, training: training); | |||
var outputs = Call(inputs, state: states, training: training); | |||
// memory leak | |||
// _set_connectivity_metadata_(inputs, outputs); | |||
@@ -32,7 +32,7 @@ using Tensorflow.Util; | |||
using static Tensorflow.Binding; | |||
using Tensorflow.Framework; | |||
using Tensorflow.Sessions; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Engine | |||
{ | |||
@@ -332,7 +332,7 @@ namespace Tensorflow.Keras.Engine | |||
/// <param name="state"></param> | |||
/// <param name="training"></param> | |||
/// <returns></returns> | |||
protected virtual Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected virtual Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
if(ReplacedCall is not null) | |||
{ | |||
@@ -1,8 +1,8 @@ | |||
using System.Diagnostics; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Framework.Models; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Losses; | |||
using Tensorflow.Keras.Saving; | |||
using Tensorflow.Keras.Saving.SavedModel; | |||
using Tensorflow.Keras.Utils; | |||
using Tensorflow.Train; | |||
@@ -21,6 +21,7 @@ using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Layers; | |||
using Tensorflow.Keras.Utils; | |||
using static Tensorflow.KerasApi; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Engine | |||
{ | |||
@@ -143,7 +144,7 @@ namespace Tensorflow.Keras.Engine | |||
} | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
if (!_has_explicit_input_shape) | |||
{ | |||
@@ -1,6 +1,7 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Saving; | |||
@@ -29,7 +30,7 @@ namespace Tensorflow.Keras.Layers { | |||
base.build(input_shape); | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
Tensor output = inputs; | |||
output = tf.where(output > 0f, output, | |||
@@ -4,7 +4,7 @@ using System.Text; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Saving; | |||
using static Tensorflow.Binding; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Layers { | |||
public class Exponential : Layer | |||
@@ -17,7 +17,7 @@ namespace Tensorflow.Keras.Layers { | |||
{ | |||
base.build(input_shape); | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
Tensor output = inputs; | |||
return tf.exp(output); | |||
@@ -3,6 +3,7 @@ using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Common.Types; | |||
using static Tensorflow.Binding; | |||
namespace Tensorflow.Keras.Layers { | |||
@@ -10,7 +11,7 @@ namespace Tensorflow.Keras.Layers { | |||
public HardSigmoid ( LayerArgs args ) : base(args) { | |||
// hard sigmoid has no arguments | |||
} | |||
protected override Tensors Call ( Tensors inputs, Tensor state = null, bool? training = null ) { | |||
protected override Tensors Call ( Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null ) { | |||
Tensor x = inputs; | |||
return tf.clip_by_value( | |||
tf.add(tf.multiply(x, 0.2f), 0.5f), 0f, 1f); | |||
@@ -3,6 +3,7 @@ using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Common.Types; | |||
using static Tensorflow.Binding; | |||
namespace Tensorflow.Keras.Layers | |||
@@ -19,7 +20,7 @@ namespace Tensorflow.Keras.Layers | |||
this.args = args; | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
return tf.nn.leaky_relu(inputs, alpha: alpha); | |||
} | |||
@@ -1,6 +1,7 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Saving; | |||
@@ -22,7 +23,7 @@ namespace Tensorflow.Keras.Layers { | |||
} | |||
base.build(input_shape); | |||
} | |||
protected override Tensors Call ( Tensors inputs, Tensor state = null, bool? training = null ) { | |||
protected override Tensors Call ( Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { | |||
Tensor output = inputs; | |||
return tf.where(output > 0f, | |||
tf.multiply(scale, output), | |||
@@ -1,6 +1,7 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
using static Tensorflow.Binding; | |||
@@ -11,8 +12,8 @@ namespace Tensorflow.Keras.Layers { | |||
public Softmax ( SoftmaxArgs args ) : base(args) { | |||
axis = args.axis; | |||
} | |||
protected override Tensors Call ( Tensors inputs, Tensor state = null, bool? training = null ) { | |||
Tensor x = inputs.Length == 2 ? inputs + ((1.0 - tf.cast(inputs[1], inputs.dtype)) * 1e-9) | |||
protected override Tensors Call ( Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { | |||
Tensor x = inputs.Length == 2 ? inputs[0] + ((1.0 - tf.cast(inputs[1], inputs.dtype)) * 1e-9) | |||
: inputs; | |||
Tensor e = tf.exp(tf.sub(x, tf.reduce_max(x, axis: this.axis, keepdims: true))); | |||
Tensor s = tf.reduce_sum(e, axis: this.axis, keepdims: true); | |||
@@ -1,6 +1,7 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
using static Tensorflow.Binding; | |||
@@ -10,7 +11,7 @@ namespace Tensorflow.Keras.Layers { | |||
public Softplus ( LayerArgs args ) : base(args) { | |||
// Softplus has no arguments | |||
} | |||
protected override Tensors Call ( Tensors inputs, Tensor state = null, bool? training = null ) { | |||
protected override Tensors Call ( Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { | |||
Tensor x = inputs; | |||
return tf.log( | |||
tf.add(tf.exp(x), 1f)); | |||
@@ -1,6 +1,7 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
using static Tensorflow.Binding; | |||
@@ -10,7 +11,7 @@ namespace Tensorflow.Keras.Layers { | |||
public Softsign ( LayerArgs args ) : base(args) { | |||
// Softsign has no arguments | |||
} | |||
protected override Tensors Call ( Tensors inputs, Tensor state = null, bool? training = null ) { | |||
protected override Tensors Call ( Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { | |||
Tensor x = inputs; | |||
// x / (abs(x) + 1) | |||
return tf.div(x, tf.add(1f, tf.abs(x))); | |||
@@ -1,6 +1,7 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
using static Tensorflow.Binding; | |||
@@ -10,7 +11,7 @@ namespace Tensorflow.Keras.Layers { | |||
public Swish ( LayerArgs args ) : base(args) { | |||
// Swish has no arguments | |||
} | |||
protected override Tensors Call ( Tensors inputs, Tensor state = null, bool? training = null ) { | |||
protected override Tensors Call ( Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) { | |||
Tensor x = inputs; | |||
// x / (1 + exp(-x)) | |||
@@ -3,6 +3,7 @@ using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Common.Types; | |||
using static Tensorflow.Binding; | |||
namespace Tensorflow.Keras.Layers | |||
@@ -13,7 +14,7 @@ namespace Tensorflow.Keras.Layers | |||
{ | |||
// Tanh has no arguments | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
Tensor x = inputs; | |||
@@ -6,6 +6,7 @@ using System; | |||
using System.Collections.Generic; | |||
using System.Linq; | |||
using Tensorflow.Keras.Saving; | |||
using Tensorflow.Common.Types; | |||
/// <summary> | |||
/// Base class for attention layers that can be used in sequence DNN/CNN models. | |||
@@ -114,7 +115,7 @@ namespace Tensorflow.Keras.Layers | |||
return (tf.linalg.einsum("bij,bjk->bik", (weights, value)), weights); | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
Tensors _inp; | |||
Tensors _mask = null; | |||
@@ -6,6 +6,7 @@ using static Tensorflow.Binding; | |||
using static Tensorflow.KerasApi; | |||
using System; | |||
using System.Linq; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Layers | |||
{ | |||
@@ -252,7 +253,7 @@ namespace Tensorflow.Keras.Layers | |||
return (attention_output, attention_scores); | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
Tensors _inp; | |||
Tensor _mask = null; | |||
@@ -349,7 +350,7 @@ namespace Tensorflow.Keras.Layers | |||
//} | |||
if (return_attention_scores) | |||
return (attention_output, attention_scores); | |||
return (attention_output, attention_scores.Single); | |||
return attention_output; | |||
} | |||
} |
@@ -20,6 +20,7 @@ using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Utils; | |||
using static Tensorflow.KerasApi; | |||
using Tensorflow.Keras.Saving; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Layers | |||
{ | |||
@@ -83,7 +84,7 @@ namespace Tensorflow.Keras.Layers | |||
_buildInputShape = input_shape; | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
var inputs_shape = array_ops.shape(inputs); | |||
var batch_size = inputs_shape[0]; | |||
@@ -17,6 +17,7 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Linq; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Saving; | |||
@@ -103,7 +104,7 @@ namespace Tensorflow.Keras.Layers | |||
_buildInputShape = input_shape; | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = false) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = false, IOptionalArgs? optional_args = null) | |||
{ | |||
var outputs = _convolution_op.Apply(inputs, kernel.AsTensor()); | |||
if (use_bias) | |||
@@ -18,6 +18,7 @@ using System; | |||
using System.Collections.Generic; | |||
using System.Diagnostics; | |||
using System.Linq; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Saving; | |||
@@ -69,7 +70,7 @@ namespace Tensorflow.Keras.Layers | |||
built = true; | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
Tensor outputs = null; | |||
var rank = inputs.rank; | |||
@@ -7,6 +7,7 @@ using System.Text.RegularExpressions; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.ArgsDefinition.Core; | |||
using Tensorflow.Keras.Saving; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Layers | |||
{ | |||
@@ -189,7 +190,7 @@ namespace Tensorflow.Keras.Layers | |||
// return new dict(base_config.items().ToList() + config.items().ToList()); | |||
//} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
var ret = tf.linalg.einsum(this.equation, (inputs, this.kernel.AsTensor())); | |||
if (this.bias != null) | |||
@@ -15,6 +15,7 @@ | |||
******************************************************************************/ | |||
using System.Linq; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Saving; | |||
@@ -66,7 +67,7 @@ namespace Tensorflow.Keras.Layers | |||
_buildInputShape = input_shape; | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
var dtype = inputs.dtype; | |||
if (dtype != tf.int32 && dtype != tf.int64) | |||
@@ -5,6 +5,7 @@ using static Tensorflow.Binding; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Saving; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Layers | |||
{ | |||
@@ -21,7 +22,7 @@ namespace Tensorflow.Keras.Layers | |||
_buildInputShape = input_shape; | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
return _merge_function(inputs); | |||
} | |||
@@ -17,6 +17,7 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Linq; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Saving; | |||
@@ -146,7 +147,7 @@ namespace Tensorflow.Keras.Layers | |||
return false; | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
Tensor outputs = null; | |||
var training_tensor = training == null | |||
@@ -17,6 +17,7 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Linq; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Saving; | |||
@@ -101,7 +102,7 @@ namespace Tensorflow.Keras.Layers | |||
return input_shape; | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
Tensor outputs = null; | |||
var inputs_dtype = inputs.dtype.as_base_dtype(); | |||
@@ -14,6 +14,7 @@ | |||
limitations under the License. | |||
******************************************************************************/ | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Saving; | |||
@@ -157,7 +158,7 @@ namespace Tensorflow.Keras.Layers | |||
base.adapt(data, batch_size: batch_size, steps: steps); | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
if (_args.Invert) | |||
{ | |||
@@ -2,6 +2,7 @@ | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Layers | |||
{ | |||
@@ -12,7 +13,7 @@ namespace Tensorflow.Keras.Layers | |||
{ | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
if (data_format == "channels_last") | |||
return math_ops.reduce_mean(inputs, 1, false); | |||
@@ -2,6 +2,7 @@ | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Layers | |||
{ | |||
@@ -12,7 +13,7 @@ namespace Tensorflow.Keras.Layers | |||
{ | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
if (data_format == "channels_last") | |||
return math_ops.reduce_mean(inputs, (1, 2), false); | |||
@@ -2,6 +2,7 @@ | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Layers | |||
{ | |||
@@ -12,7 +13,7 @@ namespace Tensorflow.Keras.Layers | |||
{ | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
if (data_format == "channels_last") | |||
return math_ops.reduce_max(inputs, 1, false); | |||
@@ -2,6 +2,7 @@ | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Layers | |||
{ | |||
@@ -12,7 +13,7 @@ namespace Tensorflow.Keras.Layers | |||
{ | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
if (data_format == "channels_last") | |||
return math_ops.reduce_max(inputs, (1, 2), false); | |||
@@ -18,6 +18,7 @@ using System.Linq; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Utils; | |||
using Tensorflow.Common.Types; | |||
using static Tensorflow.Binding; | |||
namespace Tensorflow.Keras.Layers | |||
@@ -36,7 +37,7 @@ namespace Tensorflow.Keras.Layers | |||
input_spec = new InputSpec(ndim: 3); | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
int pad_axis = args.DataFormat == "channels_first" ? 2 : 3; | |||
inputs = tf.expand_dims(inputs, pad_axis); | |||
@@ -17,6 +17,7 @@ | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Utils; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Layers | |||
{ | |||
@@ -36,7 +37,7 @@ namespace Tensorflow.Keras.Layers | |||
input_spec = new InputSpec(ndim: 4); | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
int[] pool_shape; | |||
int[] strides; | |||
@@ -1,6 +1,6 @@ | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Layers | |||
{ | |||
/// <summary> | |||
@@ -15,7 +15,7 @@ namespace Tensorflow.Keras.Layers | |||
this.args = args; | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
var depth = args.NumTokens; | |||
var max_value = tf.reduce_max(inputs); | |||
@@ -1,5 +1,6 @@ | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Layers | |||
{ | |||
@@ -17,7 +18,7 @@ namespace Tensorflow.Keras.Layers | |||
this.args = args; | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
scale = constant_op.constant(args.Scale, args.DType); | |||
offset = constant_op.constant(args.Offset, args.DType); | |||
@@ -4,6 +4,7 @@ using System; | |||
using System.Text; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Saving; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Layers | |||
{ | |||
@@ -19,7 +20,7 @@ namespace Tensorflow.Keras.Layers | |||
this.args = args; | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
return image_ops_impl.resize_images_v2(inputs, new[] { args.Height, args.Width }, method: args.Interpolation); | |||
} | |||
@@ -1,4 +1,5 @@ | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Utils; | |||
using static Tensorflow.Binding; | |||
@@ -15,7 +16,7 @@ namespace Tensorflow.Keras.Layers | |||
this.args = args; | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
if (training == null) | |||
training = false; | |||
@@ -1,6 +1,8 @@ | |||
using Tensorflow.Keras.ArgsDefinition.Reshaping; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Saving; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Layers.Reshaping | |||
{ | |||
@@ -27,7 +29,7 @@ namespace Tensorflow.Keras.Layers.Reshaping | |||
_buildInputShape = input_shape; | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
Tensor output = inputs; | |||
if (output.rank != 3) | |||
@@ -1,6 +1,7 @@ | |||
using Tensorflow.Keras.ArgsDefinition.Reshaping; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Saving; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Layers.Reshaping | |||
{ | |||
@@ -21,7 +22,7 @@ namespace Tensorflow.Keras.Layers.Reshaping | |||
built = true; | |||
_buildInputShape = input_shape; | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
Tensor output = inputs; | |||
if (output.rank != 4) | |||
@@ -1,6 +1,7 @@ | |||
using Tensorflow.Keras.ArgsDefinition.Reshaping; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Saving; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Layers.Reshaping | |||
{ | |||
@@ -21,7 +22,7 @@ namespace Tensorflow.Keras.Layers.Reshaping | |||
_buildInputShape = input_shape; | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
Tensor output = inputs; | |||
if (output.rank != 5) | |||
@@ -1,5 +1,6 @@ | |||
using System; | |||
using System.Linq; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Framework; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
@@ -23,7 +24,7 @@ namespace Tensorflow.Keras.Layers | |||
_channels_first = args.DataFormat == "channels_first"; | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
if (_channels_first) | |||
{ | |||
@@ -6,6 +6,7 @@ using Tensorflow.Keras.Utils; | |||
using static Tensorflow.Binding; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Saving; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Layers { | |||
public class Permute : Layer | |||
@@ -28,7 +29,7 @@ namespace Tensorflow.Keras.Layers { | |||
built = true; | |||
_buildInputShape = input_shape; | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
Tensor outputs = inputs; | |||
return tf.transpose(outputs, new Axis(permute)); | |||
@@ -4,6 +4,7 @@ using static Tensorflow.Binding; | |||
using System.Collections.Generic; | |||
using System; | |||
using System.Linq; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Layers | |||
{ | |||
@@ -19,7 +20,7 @@ namespace Tensorflow.Keras.Layers | |||
this.args = args; | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
var shapes = new List<Tensor>(); | |||
shapes.Add(array_ops.shape(inputs)[0]); | |||
@@ -6,6 +6,7 @@ using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Utils; | |||
using static Tensorflow.Binding; | |||
using static Tensorflow.KerasApi; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Layers | |||
{ | |||
@@ -24,7 +25,7 @@ namespace Tensorflow.Keras.Layers | |||
inputSpec = new InputSpec(ndim: 4); | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
return keras.backend.resize_images(inputs, | |||
size[0], size[1], | |||
@@ -2,6 +2,7 @@ | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Utils; | |||
using Tensorflow.Common.Types; | |||
using static Tensorflow.KerasApi; | |||
namespace Tensorflow.Keras.Layers | |||
@@ -26,7 +27,7 @@ namespace Tensorflow.Keras.Layers | |||
this.input_spec = new InputSpec(ndim: 4); | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
return keras.backend.spatial_2d_padding(inputs, | |||
padding: padding, | |||
@@ -0,0 +1,85 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
public abstract class DropoutRNNCellMixin: RnnCellBase | |||
{ | |||
public float dropout; | |||
public float recurrent_dropout; | |||
// TODO(Rinne): deal with cache. | |||
public DropoutRNNCellMixin(LayerArgs args): base(args) | |||
{ | |||
} | |||
public Tensors? get_dropout_maskcell_for_cell(Tensors input, bool training, int count = 1) | |||
{ | |||
if (dropout == 0f) | |||
return null; | |||
return _generate_dropout_mask( | |||
tf.ones_like(input), | |||
dropout, | |||
training, | |||
count); | |||
} | |||
// Get the recurrent dropout mask for RNN cell. | |||
public Tensors? get_recurrent_dropout_maskcell_for_cell(Tensors input, bool training, int count = 1) | |||
{ | |||
if (dropout == 0f) | |||
return null; | |||
return _generate_dropout_mask( | |||
tf.ones_like(input), | |||
recurrent_dropout, | |||
training, | |||
count); | |||
} | |||
public Tensors _create_dropout_mask(Tensors input, bool training, int count = 1) | |||
{ | |||
return _generate_dropout_mask( | |||
tf.ones_like(input), | |||
dropout, | |||
training, | |||
count); | |||
} | |||
public Tensors _create_recurrent_dropout_mask(Tensors input, bool training, int count = 1) | |||
{ | |||
return _generate_dropout_mask( | |||
tf.ones_like(input), | |||
recurrent_dropout, | |||
training, | |||
count); | |||
} | |||
public Tensors _generate_dropout_mask(Tensor ones, float rate, bool training, int count = 1) | |||
{ | |||
Tensors dropped_inputs() | |||
{ | |||
DropoutArgs args = new DropoutArgs(); | |||
args.Rate = rate; | |||
var DropoutLayer = new Dropout(args); | |||
var mask = DropoutLayer.Apply(ones, training: training); | |||
return mask; | |||
} | |||
if (count > 1) | |||
{ | |||
Tensors results = new Tensors(); | |||
for (int i = 0; i < count; i++) | |||
{ | |||
results.Add(dropped_inputs()); | |||
} | |||
return results; | |||
} | |||
return dropped_inputs(); | |||
} | |||
} | |||
} |
@@ -1,6 +1,7 @@ | |||
using System.Linq; | |||
using Tensorflow.Keras.ArgsDefinition.Rnn; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
@@ -26,9 +27,9 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
.ToArray(); | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
return base.Call(inputs, state: state, training: training); | |||
return base.Call(inputs, initial_state: state, training: training); | |||
} | |||
} | |||
} |
@@ -1,53 +1,466 @@ | |||
using System; | |||
using OneOf; | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Reflection; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.ArgsDefinition.Rnn; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Saving; | |||
using Tensorflow.Util; | |||
using Tensorflow.Common.Extensions; | |||
using System.Linq.Expressions; | |||
using Tensorflow.Keras.Utils; | |||
using Tensorflow.Common.Types; | |||
// from tensorflow.python.distribute import distribution_strategy_context as ds_context; | |||
namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
public class RNN : Layer | |||
/// <summary> | |||
/// Base class for recurrent layers. | |||
/// See [the Keras RNN API guide](https://www.tensorflow.org/guide/keras/rnn) | |||
/// for details about the usage of RNN API. | |||
/// </summary> | |||
public class RNN : RnnBase | |||
{ | |||
private RNNArgs args; | |||
private object input_spec = null; // or NoneValue?? | |||
private object state_spec = null; | |||
private object _states = null; | |||
private object constants_spec = null; | |||
private int _num_constants = 0; | |||
protected IVariableV1 kernel; | |||
protected IVariableV1 bias; | |||
protected ILayer cell; | |||
private RNNArgs _args; | |||
private object _input_spec = null; // or NoneValue?? | |||
private object _state_spec = null; | |||
private Tensors _states = null; | |||
private object _constants_spec = null; | |||
private int _num_constants; | |||
protected IVariableV1 _kernel; | |||
protected IVariableV1 _bias; | |||
protected IRnnCell _cell; | |||
public RNN(RNNArgs args) : base(PreConstruct(args)) | |||
{ | |||
this.args = args; | |||
_args = args; | |||
SupportsMasking = true; | |||
// The input shape is unknown yet, it could have nested tensor inputs, and | |||
// the input spec will be the list of specs for nested inputs, the structure | |||
// of the input_spec will be the same as the input. | |||
// if is StackedRnncell | |||
_cell = args.Cell; | |||
//if(stateful) | |||
//{ | |||
// if (ds_context.has_strategy()) // ds_context???? | |||
// { | |||
// throw new Exception("RNNs with stateful=True not yet supported with tf.distribute.Strategy"); | |||
// } | |||
//} | |||
// get input_shape | |||
_args = PreConstruct(args); | |||
_num_constants = 0; | |||
} | |||
// States is a tuple consist of cell states_size, like (cell1.state_size, cell2.state_size,...) | |||
// state_size can be a single integer, can also be a list/tuple of integers, can also be TensorShape or a list/tuple of TensorShape | |||
public Tensors States | |||
{ | |||
get | |||
{ | |||
if (_states == null) | |||
{ | |||
// CHECK(Rinne): check if this is correct. | |||
var state = nest.map_structure(x => null, _cell.StateSize); | |||
return new Tensors { state }; | |||
} | |||
return _states; | |||
} | |||
set { _states = value; } | |||
} | |||
private OneOf<Shape, List<Shape>> compute_output_shape(Shape input_shape) | |||
{ | |||
var batch = input_shape[0]; | |||
var time_step = input_shape[1]; | |||
if (_args.TimeMajor) | |||
{ | |||
(batch, time_step) = (time_step, batch); | |||
} | |||
// state_size is a array of ints or a positive integer | |||
var state_size = _cell.StateSize.ToSingleShape(); | |||
// TODO(wanglongzhi2001),flat_output_size应该是什么类型的,Shape还是Tensor | |||
Func<Shape, Shape> _get_output_shape; | |||
_get_output_shape = (flat_output_size) => | |||
{ | |||
var output_dim = flat_output_size.as_int_list(); | |||
Shape output_shape; | |||
if (_args.ReturnSequences) | |||
{ | |||
if (_args.TimeMajor) | |||
{ | |||
output_shape = new Shape(new int[] { (int)time_step, (int)batch }.concat(output_dim)); | |||
} | |||
else | |||
{ | |||
output_shape = new Shape(new int[] { (int)batch, (int)time_step }.concat(output_dim)); | |||
} | |||
} | |||
else | |||
{ | |||
output_shape = new Shape(new int[] { (int)batch }.concat(output_dim)); | |||
} | |||
return output_shape; | |||
}; | |||
Type type = _cell.GetType(); | |||
PropertyInfo output_size_info = type.GetProperty("output_size"); | |||
Shape output_shape; | |||
if (output_size_info != null) | |||
{ | |||
output_shape = nest.map_structure(_get_output_shape, _cell.OutputSize.ToSingleShape()); | |||
// TODO(wanglongzhi2001),output_shape应该简单的就是一个元组还是一个Shape类型 | |||
output_shape = (output_shape.Length == 1 ? (int)output_shape[0] : output_shape); | |||
} | |||
else | |||
{ | |||
output_shape = _get_output_shape(state_size); | |||
} | |||
if (_args.ReturnState) | |||
{ | |||
Func<Shape, Shape> _get_state_shape; | |||
_get_state_shape = (flat_state) => | |||
{ | |||
var state_shape = new int[] { (int)batch }.concat(flat_state.as_int_list()); | |||
return new Shape(state_shape); | |||
}; | |||
var state_shape = _get_state_shape(state_size); | |||
return new List<Shape> { output_shape, state_shape }; | |||
} | |||
else | |||
{ | |||
return output_shape; | |||
} | |||
} | |||
private Tensors compute_mask(Tensors inputs, Tensors mask) | |||
{ | |||
// Time step masks must be the same for each input. | |||
// This is because the mask for an RNN is of size [batch, time_steps, 1], | |||
// and specifies which time steps should be skipped, and a time step | |||
// must be skipped for all inputs. | |||
mask = nest.flatten(mask)[0]; | |||
var output_mask = _args.ReturnSequences ? mask : null; | |||
if (_args.ReturnState) | |||
{ | |||
var state_mask = new List<Tensor>(); | |||
for (int i = 0; i < len(States); i++) | |||
{ | |||
state_mask.Add(null); | |||
} | |||
return new List<Tensor> { output_mask }.concat(state_mask); | |||
} | |||
else | |||
{ | |||
return output_mask; | |||
} | |||
} | |||
public override void build(KerasShapesWrapper input_shape) | |||
{ | |||
if (!cell.Built) | |||
object get_input_spec(Shape shape) | |||
{ | |||
var input_spec_shape = shape.as_int_list(); | |||
var (batch_index, time_step_index) = _args.TimeMajor ? (1, 0) : (0, 1); | |||
if (!_args.Stateful) | |||
{ | |||
input_spec_shape[batch_index] = -1; | |||
} | |||
input_spec_shape[time_step_index] = -1; | |||
return new InputSpec(shape: input_spec_shape); | |||
} | |||
Shape get_step_input_shape(Shape shape) | |||
{ | |||
// return shape[1:] if self.time_major else (shape[0],) + shape[2:] | |||
if (_args.TimeMajor) | |||
{ | |||
return shape.as_int_list().ToList().GetRange(1, shape.Length - 1).ToArray(); | |||
} | |||
else | |||
{ | |||
return new int[] { shape.as_int_list()[0] }.concat(shape.as_int_list().ToList().GetRange(2, shape.Length - 2).ToArray()); | |||
} | |||
} | |||
object get_state_spec(Shape shape) | |||
{ | |||
var state_spec_shape = shape.as_int_list(); | |||
// append bacth dim | |||
state_spec_shape = new int[] { -1 }.concat(state_spec_shape); | |||
return new InputSpec(shape: state_spec_shape); | |||
} | |||
// Check whether the input shape contains any nested shapes. It could be | |||
// (tensor_shape(1, 2), tensor_shape(3, 4)) or (1, 2, 3) which is from | |||
// numpy inputs. | |||
if (!_cell.Built) | |||
{ | |||
cell.build(input_shape); | |||
_cell.build(input_shape); | |||
} | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
/// <summary> | |||
/// | |||
/// </summary> | |||
/// <param name="inputs"></param> | |||
/// <param name="mask">Binary tensor of shape [batch_size, timesteps] indicating whether a given timestep should be masked</param> | |||
/// <param name="training"></param> | |||
/// <param name="initial_state">List of initial state tensors to be passed to the first call of the cell</param> | |||
/// <param name="constants">List of constant tensors to be passed to the cell at each timestep</param> | |||
/// <returns></returns> | |||
/// <exception cref="ValueError"></exception> | |||
/// <exception cref="NotImplementedException"></exception> | |||
protected override Tensors Call(Tensors inputs, Tensors initial_state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
return base.Call(inputs, state, training); | |||
RnnOptionalArgs? rnn_optional_args = optional_args as RnnOptionalArgs; | |||
if(optional_args is not null && rnn_optional_args is null) | |||
{ | |||
throw new ArgumentException("The optional args shhould be of type `RnnOptionalArgs`"); | |||
} | |||
Tensors? constants = rnn_optional_args?.Constants; | |||
Tensors? mask = rnn_optional_args?.Mask; | |||
//var (inputs_padded, row_length) = BackendImpl.convert_inputs_if_ragged(inputs); | |||
// 暂时先不接受ragged tensor | |||
int? row_length = null; | |||
bool is_ragged_input = false; | |||
_validate_args_if_ragged(is_ragged_input, mask); | |||
(inputs, initial_state, constants) = _process_inputs(inputs, initial_state, constants); | |||
_maybe_reset_cell_dropout_mask(_cell); | |||
if (_cell is StackedRNNCells) | |||
{ | |||
var stack_cell = _cell as StackedRNNCells; | |||
foreach (var cell in stack_cell.Cells) | |||
{ | |||
_maybe_reset_cell_dropout_mask(cell); | |||
} | |||
} | |||
if (mask != null) | |||
{ | |||
// Time step masks must be the same for each input. | |||
mask = nest.flatten(mask)[0]; | |||
} | |||
Shape input_shape; | |||
if (nest.is_nested(inputs)) | |||
{ | |||
// In the case of nested input, use the first element for shape check | |||
// input_shape = nest.flatten(inputs)[0].shape; | |||
// TODO(Wanglongzhi2001) | |||
input_shape = nest.flatten(inputs)[0].shape; | |||
} | |||
else | |||
{ | |||
input_shape = inputs.shape; | |||
} | |||
var timesteps = _args.TimeMajor ? input_shape[0] : input_shape[1]; | |||
if (_args.Unroll && timesteps != null) | |||
{ | |||
throw new ValueError( | |||
"Cannot unroll a RNN if the " + | |||
"time dimension is undefined. \n" + | |||
"- If using a Sequential model, " + | |||
"specify the time dimension by passing " + | |||
"an `input_shape` or `batch_input_shape` " + | |||
"argument to your first layer. If your " + | |||
"first layer is an Embedding, you can " + | |||
"also use the `input_length` argument.\n" + | |||
"- If using the functional API, specify " + | |||
"the time dimension by passing a `shape` " + | |||
"or `batch_shape` argument to your Input layer." | |||
); | |||
} | |||
// cell_call_fn = (self.cell.__call__ if callable(self.cell) else self.cell.call) | |||
Func<Tensors, Tensors, (Tensors, Tensors)> step; | |||
if (constants is not null) | |||
{ | |||
if (!_cell.SupportOptionalArgs) | |||
{ | |||
throw new ValueError( | |||
$"RNN cell {_cell} does not support constants." + | |||
$"Received: constants={constants}"); | |||
} | |||
step = (inputs, states) => | |||
{ | |||
constants = new Tensors(states.TakeLast(_num_constants)); | |||
states = new Tensors(states.SkipLast(_num_constants)); | |||
var(output, new_states) = _cell.Apply(inputs, states, optional_args: new RnnOptionalArgs() { Constants = constants }); | |||
// TODO(Wanglongzhi2001),should cell_call_fn's return value be Tensors, Tensors? | |||
return (output, new_states.Single); | |||
}; | |||
} | |||
else | |||
{ | |||
step = (inputs, states) => | |||
{ | |||
// states = (states[0] if len(states) == 1 and is_tf_rnn_cell else states) | |||
var (output, new_states) = _cell.Apply(inputs, states); | |||
return (output, new_states.Single); | |||
}; | |||
} | |||
var (last_output, outputs, states) = BackendImpl.rnn(step, | |||
inputs, | |||
initial_state, | |||
constants: constants, | |||
go_backwards: _args.GoBackwards, | |||
mask: mask, | |||
unroll: _args.Unroll, | |||
input_length: row_length != null ? new Tensor(row_length) : new Tensor(timesteps), | |||
time_major: _args.TimeMajor, | |||
zero_output_for_mask: _args.ZeroOutputForMask, | |||
return_all_outputs: _args.ReturnSequences); | |||
if (_args.Stateful) | |||
{ | |||
throw new NotImplementedException("this argument havn't been developed."); | |||
} | |||
Tensors output = new Tensors(); | |||
if (_args.ReturnSequences) | |||
{ | |||
throw new NotImplementedException("this argument havn't been developed."); | |||
} | |||
else | |||
{ | |||
output = last_output; | |||
} | |||
if (_args.ReturnState) | |||
{ | |||
foreach (var state in states) | |||
{ | |||
output.Add(state); | |||
} | |||
return output; | |||
} | |||
else | |||
{ | |||
return output; | |||
} | |||
} | |||
public override Tensors Apply(Tensors inputs, Tensors initial_states = null, bool training = false, IOptionalArgs? optional_args = null) | |||
{ | |||
RnnOptionalArgs? rnn_optional_args = optional_args as RnnOptionalArgs; | |||
if (optional_args is not null && rnn_optional_args is null) | |||
{ | |||
throw new ArgumentException("The type of optional args should be `RnnOptionalArgs`."); | |||
} | |||
Tensors? constants = rnn_optional_args?.Constants; | |||
(inputs, initial_states, constants) = RnnUtils.standardize_args(inputs, initial_states, constants, _num_constants); | |||
if(initial_states is null && constants is null) | |||
{ | |||
return base.Apply(inputs); | |||
} | |||
// TODO(Rinne): implement it. | |||
throw new NotImplementedException(); | |||
} | |||
private (Tensors inputs, Tensors initial_state, Tensors constants) _process_inputs(Tensors inputs, Tensors initial_state, Tensors constants) | |||
{ | |||
if (inputs.Length > 1) | |||
{ | |||
if (_num_constants != 0) | |||
{ | |||
initial_state = new Tensors(inputs.Skip(1)); | |||
} | |||
else | |||
{ | |||
initial_state = new Tensors(inputs.Skip(1).SkipLast(_num_constants)); | |||
constants = new Tensors(inputs.TakeLast(_num_constants)); | |||
} | |||
if (len(initial_state) == 0) | |||
initial_state = null; | |||
inputs = inputs[0]; | |||
} | |||
if (_args.Stateful) | |||
{ | |||
if (initial_state != null) | |||
{ | |||
var tmp = new Tensor[] { }; | |||
foreach (var s in nest.flatten(States)) | |||
{ | |||
tmp.add(tf.math.count_nonzero((Tensor)s)); | |||
} | |||
var non_zero_count = tf.add_n(tmp); | |||
//initial_state = tf.cond(non_zero_count > 0, () => States, () => initial_state); | |||
if ((int)non_zero_count.numpy() > 0) | |||
{ | |||
initial_state = States; | |||
} | |||
} | |||
else | |||
{ | |||
initial_state = States; | |||
} | |||
} | |||
else if (initial_state is null) | |||
{ | |||
initial_state = get_initial_state(inputs); | |||
} | |||
if (initial_state.Length != States.Length) | |||
{ | |||
throw new ValueError( | |||
$"Layer {this} expects {States.Length} state(s), " + | |||
$"but it received {initial_state.Length} " + | |||
$"initial state(s). Input received: {inputs}"); | |||
} | |||
return (inputs, initial_state, constants); | |||
} | |||
private void _validate_args_if_ragged(bool is_ragged_input, Tensors mask) | |||
{ | |||
if (!is_ragged_input) | |||
{ | |||
return; | |||
} | |||
if (_args.Unroll) | |||
{ | |||
throw new ValueError("The input received contains RaggedTensors and does " + | |||
"not support unrolling. Disable unrolling by passing " + | |||
"`unroll=False` in the RNN Layer constructor."); | |||
} | |||
if (mask != null) | |||
{ | |||
throw new ValueError($"The mask that was passed in was {mask}, which " + | |||
"cannot be applied to RaggedTensor inputs. Please " + | |||
"make sure that there is no mask injected by upstream " + | |||
"layers."); | |||
} | |||
} | |||
void _maybe_reset_cell_dropout_mask(ILayer cell) | |||
{ | |||
//if (cell is DropoutRNNCellMixin) | |||
//{ | |||
// cell.reset_dropout_mask(); | |||
// cell.reset_recurrent_dropout_mask(); | |||
//} | |||
} | |||
private static RNNArgs PreConstruct(RNNArgs args) | |||
@@ -77,60 +490,72 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
return args; | |||
} | |||
public RNN New(LayerRnnCell cell, | |||
bool return_sequences = false, | |||
bool return_state = false, | |||
bool go_backwards = false, | |||
bool stateful = false, | |||
bool unroll = false, | |||
bool time_major = false) | |||
=> new RNN(new RNNArgs | |||
{ | |||
Cell = cell, | |||
ReturnSequences = return_sequences, | |||
ReturnState = return_state, | |||
GoBackwards = go_backwards, | |||
Stateful = stateful, | |||
Unroll = unroll, | |||
TimeMajor = time_major | |||
}); | |||
public RNN New(IList<RnnCell> cell, | |||
bool return_sequences = false, | |||
bool return_state = false, | |||
bool go_backwards = false, | |||
bool stateful = false, | |||
bool unroll = false, | |||
bool time_major = false) | |||
=> new RNN(new RNNArgs | |||
{ | |||
Cell = new StackedRNNCells(new StackedRNNCellsArgs { Cells = cell }), | |||
ReturnSequences = return_sequences, | |||
ReturnState = return_state, | |||
GoBackwards = go_backwards, | |||
Stateful = stateful, | |||
Unroll = unroll, | |||
TimeMajor = time_major | |||
}); | |||
protected Tensor get_initial_state(Tensor inputs) | |||
public Tensors __call__(Tensors inputs, Tensor state = null, Tensor training = null) | |||
{ | |||
return _generate_zero_filled_state_for_cell(null, null); | |||
throw new NotImplementedException(); | |||
} | |||
Tensor _generate_zero_filled_state_for_cell(LSTMCell cell, Tensor batch_size) | |||
// 好像不能cell不能传接口类型 | |||
//public RNN New(IRnnArgCell cell, | |||
// bool return_sequences = false, | |||
// bool return_state = false, | |||
// bool go_backwards = false, | |||
// bool stateful = false, | |||
// bool unroll = false, | |||
// bool time_major = false) | |||
// => new RNN(new RNNArgs | |||
// { | |||
// Cell = cell, | |||
// ReturnSequences = return_sequences, | |||
// ReturnState = return_state, | |||
// GoBackwards = go_backwards, | |||
// Stateful = stateful, | |||
// Unroll = unroll, | |||
// TimeMajor = time_major | |||
// }); | |||
//public RNN New(List<IRnnArgCell> cell, | |||
// bool return_sequences = false, | |||
// bool return_state = false, | |||
// bool go_backwards = false, | |||
// bool stateful = false, | |||
// bool unroll = false, | |||
// bool time_major = false) | |||
// => new RNN(new RNNArgs | |||
// { | |||
// Cell = cell, | |||
// ReturnSequences = return_sequences, | |||
// ReturnState = return_state, | |||
// GoBackwards = go_backwards, | |||
// Stateful = stateful, | |||
// Unroll = unroll, | |||
// TimeMajor = time_major | |||
// }); | |||
protected Tensors get_initial_state(Tensors inputs) | |||
{ | |||
throw new NotImplementedException(""); | |||
var input = inputs[0]; | |||
var input_shape = input.shape; | |||
var batch_size = _args.TimeMajor ? input_shape[1] : input_shape[0]; | |||
var dtype = input.dtype; | |||
Tensors init_state; | |||
if (_cell is RnnCellBase rnn_base_cell) | |||
{ | |||
init_state = rnn_base_cell.GetInitialState(null, batch_size, dtype); | |||
} | |||
else | |||
{ | |||
init_state = RnnUtils.generate_zero_filled_state(batch_size, _cell.StateSize, dtype); | |||
} | |||
return init_state; | |||
} | |||
// Check whether the state_size contains multiple states. | |||
public static bool _is_multiple_state(object state_size) | |||
public static bool is_multiple_state(GeneralizedTensorShape state_size) | |||
{ | |||
var myIndexerProperty = state_size.GetType().GetProperty("Item"); | |||
return myIndexerProperty != null | |||
&& myIndexerProperty.GetIndexParameters().Length == 1 | |||
&& !(state_size.GetType() == typeof(Shape)); | |||
return state_size.Shapes.Length > 1; | |||
} | |||
} | |||
} |
@@ -0,0 +1,13 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
public abstract class RnnBase: Layer | |||
{ | |||
public RnnBase(LayerArgs args): base(args) { } | |||
} | |||
} |
@@ -0,0 +1,24 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.ArgsDefinition.Rnn; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Utils; | |||
namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
public abstract class RnnCellBase: Layer, IRnnCell | |||
{ | |||
public RnnCellBase(LayerArgs args) : base(args) { } | |||
public abstract GeneralizedTensorShape StateSize { get; } | |||
public abstract GeneralizedTensorShape OutputSize { get; } | |||
public abstract bool SupportOptionalArgs { get; } | |||
public abstract (Tensor, Tensors) Call(Tensors inputs, Tensors states, bool? training = null); | |||
public virtual Tensors GetInitialState(Tensors inputs, long batch_size, TF_DataType dtype) | |||
{ | |||
return RnnUtils.generate_zero_filled_state_for_cell(this, inputs, batch_size, dtype); | |||
} | |||
} | |||
} |
@@ -10,18 +10,36 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
public class SimpleRNN : RNN | |||
{ | |||
SimpleRNNArgs args; | |||
public SimpleRNN(SimpleRNNArgs args) : base(args) | |||
public SimpleRNN(SimpleRNNArgs args) : base(CreateCellForArgs(args)) | |||
{ | |||
this.args = args; | |||
} | |||
private static SimpleRNNArgs CreateCellForArgs(SimpleRNNArgs args) | |||
{ | |||
args.Cell = new SimpleRNNCell(new SimpleRNNCellArgs() | |||
{ | |||
Units = args.Units, | |||
Activation = args.Activation, | |||
UseBias = args.UseBias, | |||
KernelInitializer = args.KernelInitializer, | |||
RecurrentInitializer = args.RecurrentInitializer, | |||
BiasInitializer = args.BiasInitializer, | |||
Dropout = args.Dropout, | |||
RecurrentDropout = args.RecurrentDropout, | |||
DType = args.DType, | |||
Trainable = args.Trainable, | |||
}); | |||
return args; | |||
} | |||
public override void build(KerasShapesWrapper input_shape) | |||
{ | |||
var single_shape = input_shape.ToSingleShape(); | |||
var input_dim = single_shape[-1]; | |||
_buildInputShape = input_shape; | |||
kernel = add_weight("kernel", (single_shape[-1], args.Units), | |||
_kernel = add_weight("kernel", (single_shape[-1], args.Units), | |||
initializer: args.KernelInitializer | |||
//regularizer = self.kernel_regularizer, | |||
//constraint = self.kernel_constraint, | |||
@@ -4,47 +4,128 @@ using System.Text; | |||
using Tensorflow.Keras.ArgsDefinition.Rnn; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Saving; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
public class SimpleRNNCell : Layer | |||
/// <summary> | |||
/// Cell class for SimpleRNN. | |||
/// See [the Keras RNN API guide](https://www.tensorflow.org/guide/keras/rnn) | |||
/// for details about the usage of RNN API. | |||
/// This class processes one step within the whole time sequence input, whereas | |||
/// `tf.keras.layer.SimpleRNN` processes the whole sequence. | |||
/// </summary> | |||
public class SimpleRNNCell : DropoutRNNCellMixin | |||
{ | |||
SimpleRNNArgs args; | |||
IVariableV1 kernel; | |||
IVariableV1 recurrent_kernel; | |||
IVariableV1 bias; | |||
SimpleRNNCellArgs _args; | |||
IVariableV1 _kernel; | |||
IVariableV1 _recurrent_kernel; | |||
IVariableV1 _bias; | |||
GeneralizedTensorShape _state_size; | |||
GeneralizedTensorShape _output_size; | |||
public SimpleRNNCell(SimpleRNNArgs args) : base(args) | |||
public override GeneralizedTensorShape StateSize => _state_size; | |||
public override GeneralizedTensorShape OutputSize => _output_size; | |||
public override bool SupportOptionalArgs => false; | |||
public SimpleRNNCell(SimpleRNNCellArgs args) : base(args) | |||
{ | |||
this.args = args; | |||
this._args = args; | |||
if (args.Units <= 0) | |||
{ | |||
throw new ValueError( | |||
$"units must be a positive integer, got {args.Units}"); | |||
} | |||
this._args.Dropout = Math.Min(1f, Math.Max(0f, this._args.Dropout)); | |||
this._args.RecurrentDropout = Math.Min(1f, Math.Max(0f, this._args.RecurrentDropout)); | |||
_state_size = new GeneralizedTensorShape(args.Units); | |||
_output_size = new GeneralizedTensorShape(args.Units); | |||
} | |||
public override void build(KerasShapesWrapper input_shape) | |||
{ | |||
// TODO(Rinne): add the cache. | |||
var single_shape = input_shape.ToSingleShape(); | |||
var input_dim = single_shape[-1]; | |||
kernel = add_weight("kernel", (single_shape[-1], args.Units), | |||
initializer: args.KernelInitializer | |||
_kernel = add_weight("kernel", (single_shape[-1], _args.Units), | |||
initializer: _args.KernelInitializer | |||
); | |||
recurrent_kernel = add_weight("recurrent_kernel", (args.Units, args.Units), | |||
initializer: args.RecurrentInitializer | |||
_recurrent_kernel = add_weight("recurrent_kernel", (_args.Units, _args.Units), | |||
initializer: _args.RecurrentInitializer | |||
); | |||
if (args.UseBias) | |||
if (_args.UseBias) | |||
{ | |||
bias = add_weight("bias", (args.Units), | |||
initializer: args.BiasInitializer | |||
_bias = add_weight("bias", (_args.Units), | |||
initializer: _args.BiasInitializer | |||
); | |||
} | |||
built = true; | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
public override (Tensor, Tensors) Call(Tensors inputs, Tensors states, bool? training = null) | |||
{ | |||
return base.Call(inputs, state, training); | |||
// TODO(Rinne): check if it will have multiple tensors when not nested. | |||
Tensor prev_output = states[0]; | |||
var dp_mask = get_dropout_maskcell_for_cell(inputs, training.Value); | |||
var rec_dp_mask = get_recurrent_dropout_maskcell_for_cell(prev_output, training.Value); | |||
Tensor h; | |||
var ranks = inputs.rank; | |||
if (dp_mask != null) | |||
{ | |||
if (ranks > 2) | |||
{ | |||
// 因为multiply函数会自动添加第一个维度,所以加上下标0 | |||
h = tf.linalg.tensordot(math_ops.multiply(inputs, dp_mask)[0], _kernel.AsTensor(), new[,] { { ranks - 1 }, { 0 } }); | |||
} | |||
else | |||
{ | |||
h = math_ops.matmul(math_ops.multiply(inputs, dp_mask)[0], _kernel.AsTensor()); | |||
} | |||
} | |||
else | |||
{ | |||
if (ranks > 2) | |||
{ | |||
h = tf.linalg.tensordot(inputs, _kernel.AsTensor(), new[,] { { ranks - 1 }, { 0 } }); | |||
} | |||
else | |||
{ | |||
h = math_ops.matmul(inputs, _kernel.AsTensor()); | |||
} | |||
} | |||
if (_bias != null) | |||
{ | |||
h = tf.nn.bias_add(h, _bias); | |||
} | |||
if (rec_dp_mask != null) | |||
{ | |||
prev_output = math_ops.multiply(prev_output, rec_dp_mask)[0]; | |||
} | |||
ranks = prev_output.rank; | |||
Tensor output; | |||
if (ranks > 2) | |||
{ | |||
output = h + tf.linalg.tensordot(prev_output[0], _recurrent_kernel.AsTensor(), new[,] { { ranks - 1 }, { 0 } }); | |||
} | |||
else | |||
{ | |||
output = h + math_ops.matmul(prev_output, _recurrent_kernel.AsTensor()); | |||
} | |||
Console.WriteLine($"shape of output: {output.shape}"); | |||
if (_args.Activation != null) | |||
{ | |||
output = _args.Activation.Apply(output); | |||
} | |||
return (output, new Tensors { output }); | |||
} | |||
} | |||
} |
@@ -1,6 +1,7 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.ComponentModel; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.ArgsDefinition.Rnn; | |||
using Tensorflow.Keras.Engine; | |||
@@ -8,7 +9,7 @@ using Tensorflow.Keras.Saving; | |||
namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
public class StackedRNNCells : Layer, RNNArgs.IRnnArgCell | |||
public class StackedRNNCells : Layer, IRnnCell | |||
{ | |||
public IList<RnnCell> Cells { get; set; } | |||
public bool reverse_state_order; | |||
@@ -51,7 +52,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
return lastCell.output_size; | |||
} | |||
else if (RNN._is_multiple_state(lastCell.state_size)) | |||
else if (RNN.is_multiple_state(lastCell.StateSize)) | |||
{ | |||
// return ((dynamic)Cells[-1].state_size)[0]; | |||
throw new NotImplementedException(""); | |||
@@ -162,5 +163,13 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
// deserialize_layer(cell_config, custom_objects = custom_objects)) | |||
// return cls(cells, **config) | |||
} | |||
public (Tensor, Tensors) Call(Tensors inputs, Tensors states, bool? training = null) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public GeneralizedTensorShape StateSize => throw new NotImplementedException(); | |||
public GeneralizedTensorShape OutputSize => throw new NotImplementedException(); | |||
public bool SupportOptionalArgs => throw new NotImplementedException(); | |||
} | |||
} |
@@ -10,6 +10,7 @@ using Tensorflow.Keras.Engine; | |||
using static Tensorflow.Binding; | |||
using Tensorflow.Functions; | |||
using System.Threading; | |||
using Tensorflow.Common.Types; | |||
namespace Tensorflow.Keras.Layers | |||
{ | |||
@@ -34,7 +35,7 @@ namespace Tensorflow.Keras.Layers | |||
built = true; | |||
} | |||
protected override Tensors Call(Tensors inputs, Tensor state = null, bool? training = null) | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
if (tf.Context.executing_eagerly()) | |||
return DeFunCall(inputs); | |||
@@ -304,7 +304,7 @@ public class metrics_utils | |||
var NEG_INF = -1e10; | |||
var (_, top_k_idx) = tf.math.top_k(x, k, sorted: false); | |||
var top_k_mask = tf.reduce_sum( | |||
tf.one_hot(top_k_idx, (int)x.shape[-1], axis: -1), axis: -2); | |||
tf.one_hot(top_k_idx.Single, (int)x.shape[-1], axis: -1), axis: -2); | |||
return x * top_k_mask + NEG_INF * (1 - top_k_mask); | |||
} | |||
} |
@@ -129,7 +129,7 @@ namespace Tensorflow.Keras | |||
var indices = z.map(m => | |||
{ | |||
var (i, positions) = m; | |||
return tf.range(positions[i], positions[i] + sequence_length_tensor * sampling_rate_tensor, sampling_rate_tensor); | |||
return tf.range(positions.Single[i], positions.Single[i] + sequence_length_tensor * sampling_rate_tensor, sampling_rate_tensor); | |||
}, num_parallel_calls: -1); | |||
var dataset = sequences_from_indices(data, indices, start_index, end_index); | |||
@@ -8,7 +8,7 @@ using System.Diagnostics; | |||
using System.Linq; | |||
using System.Reflection; | |||
using System.Text.RegularExpressions; | |||
using Tensorflow.Extensions; | |||
using Tensorflow.Common.Extensions; | |||
using Tensorflow.Framework.Models; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.Engine; | |||
@@ -0,0 +1,93 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Diagnostics; | |||
using System.Text; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Keras.Layers.Rnn; | |||
using Tensorflow.Common.Extensions; | |||
namespace Tensorflow.Keras.Utils | |||
{ | |||
internal static class RnnUtils | |||
{ | |||
internal static Tensors generate_zero_filled_state(long batch_size_tensor, GeneralizedTensorShape state_size, TF_DataType dtype) | |||
{ | |||
Func<GeneralizedTensorShape, Tensor> create_zeros; | |||
create_zeros = (GeneralizedTensorShape unnested_state_size) => | |||
{ | |||
var flat_dims = unnested_state_size.ToSingleShape().dims; | |||
var init_state_size = new long[] { batch_size_tensor }.Concat(flat_dims).ToArray(); | |||
return array_ops.zeros(new Shape(init_state_size), dtype: dtype); | |||
}; | |||
// TODO(Rinne): map structure with nested tensors. | |||
if(state_size.Shapes.Length > 1) | |||
{ | |||
return new Tensors(state_size.ToShapeArray().Select(s => create_zeros(new GeneralizedTensorShape(s)))); | |||
} | |||
else | |||
{ | |||
return create_zeros(state_size); | |||
} | |||
} | |||
internal static Tensors generate_zero_filled_state_for_cell(IRnnCell cell, Tensors inputs, long batch_size, TF_DataType dtype) | |||
{ | |||
if (inputs != null) | |||
{ | |||
batch_size = inputs.shape[0]; | |||
dtype = inputs.dtype; | |||
} | |||
return generate_zero_filled_state(batch_size, cell.StateSize, dtype); | |||
} | |||
/// <summary> | |||
/// Standardizes `__call__` to a single list of tensor inputs. | |||
/// | |||
/// When running a model loaded from a file, the input tensors | |||
/// `initial_state` and `constants` can be passed to `RNN.__call__()` as part | |||
/// of `inputs` instead of by the dedicated keyword arguments.This method | |||
/// makes sure the arguments are separated and that `initial_state` and | |||
/// `constants` are lists of tensors(or None). | |||
/// </summary> | |||
/// <param name="inputs">Tensor or list/tuple of tensors. which may include constants | |||
/// and initial states.In that case `num_constant` must be specified.</param> | |||
/// <param name="initial_state">Tensor or list of tensors or None, initial states.</param> | |||
/// <param name="constants">Tensor or list of tensors or None, constant tensors.</param> | |||
/// <param name="num_constants">Expected number of constants (if constants are passed as | |||
/// part of the `inputs` list.</param> | |||
/// <returns></returns> | |||
internal static (Tensors, Tensors, Tensors) standardize_args(Tensors inputs, Tensors initial_state, Tensors constants, int num_constants) | |||
{ | |||
if(inputs.Length > 1) | |||
{ | |||
// There are several situations here: | |||
// In the graph mode, __call__ will be only called once. The initial_state | |||
// and constants could be in inputs (from file loading). | |||
// In the eager mode, __call__ will be called twice, once during | |||
// rnn_layer(inputs=input_t, constants=c_t, ...), and second time will be | |||
// model.fit/train_on_batch/predict with real np data. In the second case, | |||
// the inputs will contain initial_state and constants as eager tensor. | |||
// | |||
// For either case, the real input is the first item in the list, which | |||
// could be a nested structure itself. Then followed by initial_states, which | |||
// could be a list of items, or list of list if the initial_state is complex | |||
// structure, and finally followed by constants which is a flat list. | |||
Debug.Assert(initial_state is null && constants is null); | |||
if(num_constants > 0) | |||
{ | |||
constants = inputs.TakeLast(num_constants).ToTensors(); | |||
inputs = inputs.SkipLast(num_constants).ToTensors(); | |||
} | |||
if(inputs.Length > 1) | |||
{ | |||
initial_state = inputs.Skip(1).ToTensors(); | |||
inputs = inputs.Take(1).ToTensors(); | |||
} | |||
} | |||
return (inputs, initial_state, constants); | |||
} | |||
} | |||
} |
@@ -144,17 +144,6 @@ namespace Tensorflow.Keras.UnitTest.Layers | |||
Assert.AreEqual(expected_output, actual_output); | |||
} | |||
[TestMethod, Ignore("WIP")] | |||
public void SimpleRNN() | |||
{ | |||
var inputs = np.arange(6 * 10 * 8).reshape((6, 10, 8)).astype(np.float32); | |||
/*var simple_rnn = keras.layers.SimpleRNN(4); | |||
var output = simple_rnn.Apply(inputs); | |||
Assert.AreEqual((32, 4), output.shape);*/ | |||
var simple_rnn = tf.keras.layers.SimpleRNN(4, return_sequences: true, return_state: true); | |||
var (whole_sequence_output, final_state) = simple_rnn.Apply(inputs); | |||
} | |||
[TestMethod] | |||
public void Resizing() | |||
{ | |||
@@ -0,0 +1,28 @@ | |||
using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Linq; | |||
using System.Text; | |||
using System.Threading.Tasks; | |||
using Tensorflow.NumPy; | |||
using static Tensorflow.Binding; | |||
namespace Tensorflow.Keras.UnitTest.Layers | |||
{ | |||
[TestClass] | |||
public class Rnn | |||
{ | |||
[TestMethod] | |||
public void SimpleRNN() | |||
{ | |||
var inputs = np.arange(6 * 10 * 8).reshape((6, 10, 8)).astype(np.float32); | |||
/*var simple_rnn = keras.layers.SimpleRNN(4); | |||
var output = simple_rnn.Apply(inputs); | |||
Assert.AreEqual((32, 4), output.shape);*/ | |||
var simple_rnn = tf.keras.layers.SimpleRNN(4, return_sequences: true, return_state: true); | |||
var (whole_sequence_output, final_state) = simple_rnn.Apply(inputs); | |||
Console.WriteLine(whole_sequence_output); | |||
Console.WriteLine(final_state); | |||
} | |||
} | |||
} |
@@ -20,7 +20,7 @@ namespace Tensorflow | |||
// whole_sequence_output has shape `[32, 10, 4]`. | |||
// final_state has shape `[32, 4]`. | |||
var (whole_sequence_output, final_state) = simple_rnn.Apply(inputs); | |||
var (whole_sequence_output, final_states) = simple_rnn.Apply(inputs); | |||
} | |||
} | |||
} |