Browse Source

Merge pull request #1145 from dogvane/master

Thanks for your contribution.
tags/v0.110.4-Transformer-Model
Haiping GitHub 2 years ago
parent
commit
3006c86d9b
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 40 additions and 6 deletions
  1. +7
    -6
      src/TensorFlowNET.Core/Operations/image_ops_impl.cs
  2. +32
    -0
      src/TensorFlowNET.Keras/Preprocessings/Preprocessing.image_dataset_from_directory.cs
  3. +1
    -0
      src/TensorFlowNET.Keras/Preprocessings/Preprocessing.paths_and_labels_to_dataset.cs

+ 7
- 6
src/TensorFlowNET.Core/Operations/image_ops_impl.cs View File

@@ -102,11 +102,12 @@ namespace Tensorflow
{
throw new ValueError("\'image\' must be fully defined.");
}
for (int x = 1; x < 4; x++)
var dims = image_shape["-3:"];
foreach (var dim in dims.dims)
{
if (image_shape.dims[x] == 0)
if (dim == 0)
{
throw new ValueError(String.Format("inner 3 dims of \'image.shape\' must be > 0: {0}", image_shape));
throw new ValueError("inner 3 dimensions of \'image\' must be > 0: " + image_shape);
}
}

@@ -965,9 +966,9 @@ new_height, new_width");
if (Array.Exists(new[] { dtypes.float16, dtypes.float32 }, orig_dtype => orig_dtype == orig_dtype))
image = convert_image_dtype(image, dtypes.float32);

var num_pixels_ = array_ops.shape(image).dims;
num_pixels_ = num_pixels_.Skip(num_pixels_.Length - 3).Take(num_pixels_.Length - (num_pixels_.Length - 3)).ToArray();
Tensor num_pixels = math_ops.reduce_prod(new Tensor(num_pixels_));
var x = image.shape["-3:"];
var num_pixels = math_ops.reduce_prod(x);
Tensor image_mean = math_ops.reduce_mean(image, axis: new(-1, -2, -3), keepdims: true);

var stddev = math_ops.reduce_std(image, axis: new(-1, -2, -3), keepdims: true);


+ 32
- 0
src/TensorFlowNET.Keras/Preprocessings/Preprocessing.image_dataset_from_directory.cs View File

@@ -8,6 +8,37 @@ namespace Tensorflow.Keras
{
public static string[] WHITELIST_FORMATS = new[] { ".bmp", ".gif", ".jpeg", ".jpg", ".png" };

/// <summary>
/// Function that calculates the classification statistics for a given array of classified data.
/// The function takes an array of classified data as input and returns a dictionary containing the count and percentage of each class in the input array.
/// This function can be used to analyze the distribution of classes in a dataset or to evaluate the performance of a classification model.
/// </summary>
/// <remarks>
/// code from copilot
/// </remarks>
/// <param name="label_ids"></param>
/// <param name="label_class_names"></param>
Dictionary<string, double> get_classification_statistics(int[] label_ids, string[] label_class_names)
{
var countDict = label_ids.GroupBy(x => x)
.ToDictionary(g => g.Key, g => g.Count());
var totalCount = label_ids.Length;
var ratioDict = label_class_names.ToDictionary(name => name,
name =>
(double)(countDict.ContainsKey(Array.IndexOf(label_class_names, name))
? countDict[Array.IndexOf(label_class_names, name)] : 0)
/ totalCount);

print("Classification statistics:");
foreach (string labelName in label_class_names)
{
double ratio = ratioDict[labelName];
print($"{labelName}: {ratio * 100:F2}%");
}

return ratioDict;
}

/// <summary>
/// Generates a `tf.data.Dataset` from image files in a directory.
/// https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image_dataset_from_directory
@@ -53,6 +84,7 @@ namespace Tensorflow.Keras
follow_links: follow_links);

(image_paths, label_list) = keras.preprocessing.dataset_utils.get_training_or_validation_split(image_paths, label_list, validation_split, subset);
get_classification_statistics(label_list, class_name_list);

var dataset = paths_and_labels_to_dataset(image_paths, image_size, num_channels, label_list, label_mode, class_name_list.Length, interpolation);
if (shuffle)


+ 1
- 0
src/TensorFlowNET.Keras/Preprocessings/Preprocessing.paths_and_labels_to_dataset.cs View File

@@ -9,6 +9,7 @@ namespace Tensorflow.Keras

/// <summary>
/// 图片路径转为数据处理用的dataset
/// 通常用于预测时读取图片
/// </summary>
/// <param name="image_paths"></param>
/// <param name="image_size"></param>


Loading…
Cancel
Save