@@ -28,7 +28,7 @@ namespace Tensorflow | |||
/// <param name="name"></param> | |||
/// <param name="conjugate"></param> | |||
/// <returns></returns> | |||
public static Tensor transpose(Tensor a, int[] perm = null, string name = "transpose", bool conjugate = false) | |||
public static Tensor transpose<T1, T2>(T1 a, T2 perm, string name = "transpose", bool conjugate = false) | |||
=> array_ops.transpose(a, perm, name, conjugate); | |||
public static Tensor squeeze(Tensor input, int[] axis = null, string name = null, int squeeze_dims = -1) | |||
@@ -10,5 +10,21 @@ namespace Tensorflow.Gradients | |||
{ | |||
return new Tensor[] { array_ops.reshape(grads[0], array_ops.shape(op.inputs[0])), null }; | |||
} | |||
public static Tensor[] _SqueezeGrad(Operation op, Tensor[] grads) | |||
{ | |||
return new Tensor[] { _ReshapeToInput(op, grads[0]) }; | |||
} | |||
private static Tensor _ReshapeToInput(Operation op, Tensor grad) | |||
{ | |||
return array_ops.reshape(grad, array_ops.shape(op.inputs[0])); | |||
} | |||
public static Tensor[] _TransposeGrad(Operation op, Tensor[] grads) | |||
{ | |||
var p = op.inputs[1]; | |||
return new Tensor[] { array_ops.transpose(grads[0], array_ops.invert_permutation(p)), null }; | |||
} | |||
} | |||
} |
@@ -0,0 +1,22 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Gradients | |||
{ | |||
public class control_flow_grad | |||
{ | |||
public static Tensor[] _MergeGrad(Operation op, Tensor[] grads) | |||
{ | |||
var grad = grads[0]; | |||
var _ = grads[1]; | |||
var input_op = op.inputs[0].op; | |||
var graph = ops.get_default_graph(); | |||
var op_ctxt = control_flow_util.GetOutputContext(input_op); | |||
var pred = op_ctxt.pred; | |||
var results = control_flow_ops._SwitchRefOrTensor(grad, pred, name: "cond_grad"); | |||
return new Tensor[] { results.Item1, results.Item2 }; | |||
} | |||
} | |||
} |
@@ -93,7 +93,7 @@ namespace Tensorflow.Gradients | |||
var in_lastdim = array_ops.gather(math_ops.cast(in_shape, TF_DataType.TF_INT64), | |||
array_ops.size(in_shape) - 1); | |||
var outerdim = array_ops.shape(ind_2d); | |||
var outerdim = array_ops.shape(ind_2d)[0]; | |||
// Compute linear indices(flattened to 1D). | |||
var cast1 = math_ops.cast(outerdim, TF_DataType.TF_INT64); | |||
@@ -102,7 +102,17 @@ namespace Tensorflow.Gradients | |||
var cast2 = math_ops.cast(dim2, TF_DataType.TF_INT32); | |||
var ind = array_ops.reshape(ind_2d + cast2, new int[] { -1 }); | |||
throw new NotImplementedException("nn_grad._TopKGrad"); | |||
// Substitute grad to appropriate locations and fill the rest with zeros, | |||
// finally reshaping it to the original input shape. | |||
var scatter = gen_array_ops.scatter_nd(array_ops.expand_dims(ind, -1), | |||
array_ops.reshape(grad, new int[] { -1 }), | |||
new Tensor[] { math_ops.reduce_prod(in_shape) }); | |||
return new Tensor[] | |||
{ | |||
array_ops.reshape(scatter, in_shape), | |||
array_ops.zeros(new int[0], dtype: TF_DataType.TF_INT32) | |||
}; | |||
} | |||
} | |||
} |
@@ -26,6 +26,8 @@ namespace Tensorflow | |||
return math_grad._IdGrad(oper, out_grads); | |||
case "MatMul": | |||
return math_grad._MatMulGrad(oper, out_grads); | |||
case "Merge": | |||
return control_flow_grad._MergeGrad(oper, out_grads); | |||
case "Mul": | |||
return math_grad._MulGrad(oper, out_grads); | |||
case "Mean": | |||
@@ -42,8 +44,12 @@ namespace Tensorflow | |||
return array_grad._ReshapeGrad(oper, out_grads); | |||
case "Relu": | |||
return nn_grad._ReluGrad(oper, out_grads); | |||
case "Squeeze": | |||
return array_grad._SqueezeGrad(oper, out_grads); | |||
case "SoftmaxCrossEntropyWithLogits": | |||
return nn_grad._SoftmaxCrossEntropyWithLogitsGrad(oper, out_grads); | |||
case "Transpose": | |||
return array_grad._TransposeGrad(oper, out_grads); | |||
case "TopK": | |||
case "TopKV2": | |||
return nn_grad._TopKGrad(oper, out_grads); | |||
@@ -10,22 +10,28 @@ namespace Tensorflow.Operations | |||
public class CondContext : ControlFlowContext | |||
{ | |||
private string _name; | |||
/// <summary> | |||
/// The boolean tensor for the cond predicate | |||
/// </summary> | |||
private Tensor _pred; | |||
public Tensor pred => _pred; | |||
/// <summary> | |||
/// The predicate tensor in this branch | |||
/// </summary> | |||
private Tensor _pivot; | |||
/// <summary> | |||
/// 0 or 1 representing this branch | |||
/// </summary> | |||
private int _branch; | |||
/// <summary> | |||
/// | |||
/// </summary> | |||
private List<string> _values = new List<string>(); | |||
private Dictionary<string, Tensor> _external_values = new Dictionary<string, Tensor>(); | |||
/// <summary> | |||
@@ -32,5 +32,10 @@ namespace Tensorflow | |||
{ | |||
_control_flow_context = ctx; | |||
} | |||
public CondContext _get_control_flow_context() | |||
{ | |||
return _control_flow_context; | |||
} | |||
} | |||
} |
@@ -7,7 +7,8 @@ namespace Tensorflow | |||
{ | |||
public class array_ops : Python | |||
{ | |||
public static Tensor placeholder_with_default<T>(T input, int[] shape, string name = null) => gen_array_ops.placeholder_with_default(input, shape, name); | |||
public static Tensor placeholder_with_default<T>(T input, int[] shape, string name = null) | |||
=> gen_array_ops.placeholder_with_default(input, shape, name); | |||
public static Tensor zeros(Shape shape, TF_DataType dtype = TF_DataType.TF_FLOAT, string name = null) | |||
{ | |||
@@ -111,14 +112,14 @@ namespace Tensorflow | |||
}); | |||
} | |||
public static Tensor expand_dims(Tensor input, int axis = -1, string name = null, int dim = -1) => expand_dims_v2(input, axis, name); | |||
public static Tensor expand_dims(Tensor input, int axis = -1, string name = null, int dim = -1) | |||
=> expand_dims_v2(input, axis, name); | |||
private static Tensor expand_dims_v2(Tensor input, int axis, string name = null) => gen_array_ops.expand_dims(input, axis, name); | |||
private static Tensor expand_dims_v2(Tensor input, int axis, string name = null) | |||
=> gen_array_ops.expand_dims(input, axis, name); | |||
public static Tensor rank(Tensor input, string name = null) | |||
{ | |||
return math_ops.rank_internal(input, name, optimize: true); | |||
} | |||
=> math_ops.rank_internal(input, name, optimize: true); | |||
/// <summary> | |||
/// Creates a tensor with all elements set to 1. | |||
@@ -132,9 +133,7 @@ namespace Tensorflow | |||
=> ones_like_impl(tensor, dtype, name, optimize); | |||
public static Tensor reshape<T1, T2>(T1 tensor, T2 shape, string name = null) | |||
{ | |||
return gen_array_ops.reshape(tensor, shape, null); | |||
} | |||
=> gen_array_ops.reshape(tensor, shape, null); | |||
private static Tensor ones_like_impl<T>(T tensor, TF_DataType dtype, string name, bool optimize = true) | |||
{ | |||
@@ -239,14 +238,10 @@ namespace Tensorflow | |||
/// </param> | |||
/// <returns>A `Tensor` of type `out_type`.</returns> | |||
public static Tensor shape(Tensor input, string name = null, TF_DataType out_type = TF_DataType.TF_INT32) | |||
{ | |||
return shape_internal(input, name, optimize: true, out_type: out_type); | |||
} | |||
=> shape_internal(input, name, optimize: true, out_type: out_type); | |||
public static Tensor size(Tensor input, string name = null, bool optimize = true, TF_DataType out_type = TF_DataType.TF_INT32) | |||
{ | |||
return size_internal(input, name, optimize: optimize, out_type: out_type); | |||
} | |||
=> size_internal(input, name, optimize: optimize, out_type: out_type); | |||
private static Tensor shape_internal(Tensor input, string name = null, bool optimize = true, TF_DataType out_type = TF_DataType.TF_INT32) | |||
{ | |||
@@ -323,8 +318,46 @@ namespace Tensorflow | |||
/// <param name="name"></param> | |||
/// <returns></returns> | |||
public static Tensor stop_gradient(Tensor input, string name = null) | |||
=> gen_array_ops.stop_gradient(input, name); | |||
/// <summary> | |||
/// Extracts a strided slice of a tensor (generalized python array indexing). | |||
/// </summary> | |||
/// <param name="input_"></param> | |||
/// <param name="begin"></param> | |||
/// <param name="end"></param> | |||
/// <param name="strides"></param> | |||
/// <param name="begin_mask"></param> | |||
/// <param name="end_mask"></param> | |||
/// <param name="ellipsis_mask"></param> | |||
/// <param name="new_axis_mask"></param> | |||
/// <param name="shrink_axis_mask"></param> | |||
/// <param name="name"></param> | |||
/// <returns></returns> | |||
public static Tensor strided_slice(Tensor input_, Tensor begin, Tensor end, | |||
Tensor strides = null, | |||
int begin_mask = 0, | |||
int end_mask = 0, | |||
int ellipsis_mask = 0, | |||
int new_axis_mask = 0, | |||
int shrink_axis_mask = 0, | |||
string name = null) | |||
{ | |||
return gen_array_ops.stop_gradient(input, name); | |||
var op = gen_array_ops.strided_slice( | |||
input: input_, | |||
begin: begin, | |||
end: end, | |||
strides: strides, | |||
begin_mask: begin_mask, | |||
end_mask: end_mask, | |||
ellipsis_mask: ellipsis_mask, | |||
new_axis_mask: new_axis_mask, | |||
shrink_axis_mask: shrink_axis_mask, | |||
name: name); | |||
string parent_name = name; | |||
return op; | |||
} | |||
/// <summary> | |||
@@ -345,14 +378,14 @@ namespace Tensorflow | |||
/// Contains the same data as `input`, but has one or more dimensions of | |||
/// size 1 removed.</returns> | |||
public static Tensor squeeze(Tensor input, int[] axis = null, string name = null, int[] squeeze_dims = null) | |||
{ | |||
return gen_array_ops.squeeze(input, axis, name); | |||
} | |||
=> gen_array_ops.squeeze(input, axis, name); | |||
public static Tensor identity(Tensor input, string name = null) | |||
{ | |||
return gen_array_ops.identity(input, name); | |||
} | |||
=> gen_array_ops.identity(input, name); | |||
public static Tensor invert_permutation(Tensor x, string name = null) | |||
=> gen_array_ops.invert_permutation(x, name: name); | |||
/// <summary> | |||
/// Computes the shape of a broadcast given symbolic shapes. | |||
/// When shape_x and shape_y are Tensors representing shapes(i.e.the result of | |||
@@ -368,26 +401,19 @@ namespace Tensorflow | |||
/// <param name="shape_y"> A rank 1 integer `Tensor`, representing the shape of y.</param> | |||
/// <returns> A rank 1 integer `Tensor` representing the broadcasted shape.</returns> | |||
public static Tensor broadcast_dynamic_shape(Tensor shape_x, Tensor shape_y) | |||
{ | |||
return gen_array_ops.broadcast_args(shape_x, shape_y); | |||
} | |||
=> gen_array_ops.broadcast_args(shape_x, shape_y); | |||
public static Tensor broadcast_static_shape(Tensor shape_x, Tensor shape_y) | |||
{ | |||
return Framework.common_shapes.broadcast_shape(shape_x, shape_y); | |||
} | |||
=> Framework.common_shapes.broadcast_shape(shape_x, shape_y); | |||
public static Tensor gather(Tensor @params, Tensor indices, string name = null, int axis = 0) | |||
{ | |||
return gen_array_ops.gather_v2(@params, indices, axis, name: name); | |||
} | |||
=> gen_array_ops.gather_v2(@params, indices, axis, name: name); | |||
public static Tensor transpose(Tensor a, int[] perm = null, string name = "transpose", bool conjugate = false) | |||
public static Tensor transpose<T1, T2>(T1 a, T2 perm, string name = "transpose", bool conjugate = false) | |||
{ | |||
return with(ops.name_scope(name, "transpose", new { a }), scope => | |||
{ | |||
name = scope; | |||
return gen_array_ops.transpose(a, perm, name); | |||
return gen_array_ops.transpose(a, perm, name: scope); | |||
}); | |||
} | |||
@@ -138,6 +138,22 @@ namespace Tensorflow | |||
return gen_array_ops.identity(data, name: name); | |||
} | |||
/// <summary> | |||
/// Forwards `data` to an output determined by `pred`. | |||
/// </summary> | |||
/// <param name="data"></param> | |||
/// <param name="pred"></param> | |||
/// <param name="name"></param> | |||
/// <returns></returns> | |||
public static (Tensor, Tensor) _SwitchRefOrTensor(Tensor data, Tensor pred, string name = "Switch") | |||
{ | |||
data = ops.convert_to_tensor_or_indexed_slices(data, name: "data"); | |||
ops.colocate_with(data, ignore_existing: true); | |||
return @switch(data, pred, name: name); | |||
} | |||
public static Tensor[] cond<T>(Tensor pred, | |||
Func<T[]> true_fn = null, | |||
Func<T[]> false_fn = null, | |||
@@ -1,6 +1,7 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Operations; | |||
namespace Tensorflow | |||
{ | |||
@@ -25,5 +26,12 @@ namespace Tensorflow | |||
{ | |||
return op.type == "Switch" || op.type == "RefSwitch"; | |||
} | |||
public static CondContext GetOutputContext(Operation op) | |||
{ | |||
var ctxt = op._get_control_flow_context(); | |||
return ctxt; | |||
} | |||
} | |||
} |
@@ -74,6 +74,13 @@ namespace Tensorflow | |||
return _op.outputs[0]; | |||
} | |||
public static Tensor invert_permutation(Tensor x, string name = null) | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("InvertPermutation", name, new { x }); | |||
return _op.outputs[0]; | |||
} | |||
public static Tensor log(Tensor x, string name = null) | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("Log", name: name, args: new { x }); | |||
@@ -163,6 +170,12 @@ namespace Tensorflow | |||
return _op.outputs[0]; | |||
} | |||
public static Tensor scatter_nd(Tensor indices, Tensor updates, Tensor[] shape, string name = null) | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("ScatterNd", name, new { indices, updates, shape }); | |||
return _op.outputs[0]; | |||
} | |||
public static Tensor shape(Tensor input, TF_DataType out_type = TF_DataType.TF_INT32, string name = null) | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("Shape", name, new { input, out_type }); | |||
@@ -181,7 +194,7 @@ namespace Tensorflow | |||
return _op.outputs[0]; | |||
} | |||
public static Tensor transpose(Tensor x, int[] perm, string name = null) | |||
public static Tensor transpose<T1, T2>(T1 x, T2 perm, string name = null) | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("Transpose", name, new { x, perm }); | |||
return _op.outputs[0]; | |||
@@ -200,6 +213,30 @@ namespace Tensorflow | |||
return _op.outputs[0]; | |||
} | |||
public static Tensor strided_slice(Tensor input, Tensor begin, Tensor end, Tensor strides, | |||
int begin_mask = 0, | |||
int end_mask = 0, | |||
int ellipsis_mask = 0, | |||
int new_axis_mask = 0, | |||
int shrink_axis_mask = 0, | |||
string name = null) | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("StridedSlice", name, new | |||
{ | |||
input, | |||
begin, | |||
end, | |||
strides, | |||
begin_mask, | |||
end_mask, | |||
ellipsis_mask, | |||
new_axis_mask, | |||
shrink_axis_mask | |||
}); | |||
return _op.outputs[0]; | |||
} | |||
public static Tensor slice<Tb, Ts>(Tensor input, Tb[] begin, Ts[] size, string name = null) | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("Slice", name, new { input, begin, size }); | |||
@@ -187,6 +187,61 @@ namespace Tensorflow | |||
} | |||
} | |||
public Tensor this[int slice_spec] | |||
{ | |||
get | |||
{ | |||
var slice_spec_s = new int[] { slice_spec }; | |||
var begin = new List<int>(); | |||
var end = new List<int>(); | |||
var strides = new List<int>(); | |||
var index = 0; | |||
var (new_axis_mask, shrink_axis_mask) = (0, 0); | |||
var (begin_mask, end_mask) = (0, 0); | |||
var ellipsis_mask = 0; | |||
foreach(var s in slice_spec_s) | |||
{ | |||
{ | |||
begin.Add(s); | |||
end.Add(s + 1); | |||
strides.Add(1); | |||
shrink_axis_mask |= (1 << index); | |||
} | |||
index += 1; | |||
} | |||
return with(ops.name_scope(null, "strided_slice", new { begin, end, strides }), scope => | |||
{ | |||
string name = scope; | |||
if(begin != null) | |||
{ | |||
var (packed_begin, packed_end, packed_strides) = | |||
(array_ops.stack(begin.ToArray()), | |||
array_ops.stack(end.ToArray()), | |||
array_ops.stack(strides.ToArray())); | |||
return gen_array_ops.strided_slice( | |||
this, | |||
packed_begin, | |||
packed_end, | |||
packed_strides, | |||
begin_mask: begin_mask, | |||
end_mask: end_mask, | |||
shrink_axis_mask: shrink_axis_mask, | |||
new_axis_mask: new_axis_mask, | |||
ellipsis_mask: ellipsis_mask, | |||
name: name); | |||
} | |||
throw new NotImplementedException(""); | |||
}); | |||
} | |||
} | |||
public override string ToString() | |||
{ | |||
if(NDims == 0) | |||