Browse Source

add strided_slice for Tensor, _SwitchRefOrTensor

tags/v0.8.0
haiping008 6 years ago
parent
commit
2e89fa7b76
12 changed files with 245 additions and 38 deletions
  1. +1
    -1
      src/TensorFlowNET.Core/APIs/tf.array.cs
  2. +16
    -0
      src/TensorFlowNET.Core/Gradients/array_grad.py.cs
  3. +22
    -0
      src/TensorFlowNET.Core/Gradients/control_flow_grad.py.cs
  4. +12
    -2
      src/TensorFlowNET.Core/Gradients/nn_grad.py.cs
  5. +6
    -0
      src/TensorFlowNET.Core/Gradients/ops.gradient_function_mapping.cs
  6. +6
    -0
      src/TensorFlowNET.Core/Operations/ControlFlows/CondContext.cs
  7. +5
    -0
      src/TensorFlowNET.Core/Operations/Operation.Control.cs
  8. +60
    -34
      src/TensorFlowNET.Core/Operations/array_ops.py.cs
  9. +16
    -0
      src/TensorFlowNET.Core/Operations/control_flow_ops.py.cs
  10. +8
    -0
      src/TensorFlowNET.Core/Operations/control_flow_util.py.cs
  11. +38
    -1
      src/TensorFlowNET.Core/Operations/gen_array_ops.cs
  12. +55
    -0
      src/TensorFlowNET.Core/Tensors/Tensor.cs

+ 1
- 1
src/TensorFlowNET.Core/APIs/tf.array.cs View File

@@ -28,7 +28,7 @@ namespace Tensorflow
/// <param name="name"></param>
/// <param name="conjugate"></param>
/// <returns></returns>
public static Tensor transpose(Tensor a, int[] perm = null, string name = "transpose", bool conjugate = false)
public static Tensor transpose<T1, T2>(T1 a, T2 perm, string name = "transpose", bool conjugate = false)
=> array_ops.transpose(a, perm, name, conjugate);

public static Tensor squeeze(Tensor input, int[] axis = null, string name = null, int squeeze_dims = -1)


+ 16
- 0
src/TensorFlowNET.Core/Gradients/array_grad.py.cs View File

@@ -10,5 +10,21 @@ namespace Tensorflow.Gradients
{
return new Tensor[] { array_ops.reshape(grads[0], array_ops.shape(op.inputs[0])), null };
}

public static Tensor[] _SqueezeGrad(Operation op, Tensor[] grads)
{
return new Tensor[] { _ReshapeToInput(op, grads[0]) };
}

private static Tensor _ReshapeToInput(Operation op, Tensor grad)
{
return array_ops.reshape(grad, array_ops.shape(op.inputs[0]));
}

public static Tensor[] _TransposeGrad(Operation op, Tensor[] grads)
{
var p = op.inputs[1];
return new Tensor[] { array_ops.transpose(grads[0], array_ops.invert_permutation(p)), null };
}
}
}

+ 22
- 0
src/TensorFlowNET.Core/Gradients/control_flow_grad.py.cs View File

@@ -0,0 +1,22 @@
using System;
using System.Collections.Generic;
using System.Text;

namespace Tensorflow.Gradients
{
public class control_flow_grad
{
public static Tensor[] _MergeGrad(Operation op, Tensor[] grads)
{
var grad = grads[0];
var _ = grads[1];
var input_op = op.inputs[0].op;
var graph = ops.get_default_graph();
var op_ctxt = control_flow_util.GetOutputContext(input_op);
var pred = op_ctxt.pred;

var results = control_flow_ops._SwitchRefOrTensor(grad, pred, name: "cond_grad");
return new Tensor[] { results.Item1, results.Item2 };
}
}
}

+ 12
- 2
src/TensorFlowNET.Core/Gradients/nn_grad.py.cs View File

@@ -93,7 +93,7 @@ namespace Tensorflow.Gradients

var in_lastdim = array_ops.gather(math_ops.cast(in_shape, TF_DataType.TF_INT64),
array_ops.size(in_shape) - 1);
var outerdim = array_ops.shape(ind_2d);
var outerdim = array_ops.shape(ind_2d)[0];

// Compute linear indices(flattened to 1D).
var cast1 = math_ops.cast(outerdim, TF_DataType.TF_INT64);
@@ -102,7 +102,17 @@ namespace Tensorflow.Gradients
var cast2 = math_ops.cast(dim2, TF_DataType.TF_INT32);
var ind = array_ops.reshape(ind_2d + cast2, new int[] { -1 });

throw new NotImplementedException("nn_grad._TopKGrad");
// Substitute grad to appropriate locations and fill the rest with zeros,
// finally reshaping it to the original input shape.
var scatter = gen_array_ops.scatter_nd(array_ops.expand_dims(ind, -1),
array_ops.reshape(grad, new int[] { -1 }),
new Tensor[] { math_ops.reduce_prod(in_shape) });

return new Tensor[]
{
array_ops.reshape(scatter, in_shape),
array_ops.zeros(new int[0], dtype: TF_DataType.TF_INT32)
};
}
}
}

+ 6
- 0
src/TensorFlowNET.Core/Gradients/ops.gradient_function_mapping.cs View File

@@ -26,6 +26,8 @@ namespace Tensorflow
return math_grad._IdGrad(oper, out_grads);
case "MatMul":
return math_grad._MatMulGrad(oper, out_grads);
case "Merge":
return control_flow_grad._MergeGrad(oper, out_grads);
case "Mul":
return math_grad._MulGrad(oper, out_grads);
case "Mean":
@@ -42,8 +44,12 @@ namespace Tensorflow
return array_grad._ReshapeGrad(oper, out_grads);
case "Relu":
return nn_grad._ReluGrad(oper, out_grads);
case "Squeeze":
return array_grad._SqueezeGrad(oper, out_grads);
case "SoftmaxCrossEntropyWithLogits":
return nn_grad._SoftmaxCrossEntropyWithLogitsGrad(oper, out_grads);
case "Transpose":
return array_grad._TransposeGrad(oper, out_grads);
case "TopK":
case "TopKV2":
return nn_grad._TopKGrad(oper, out_grads);


+ 6
- 0
src/TensorFlowNET.Core/Operations/ControlFlows/CondContext.cs View File

@@ -10,22 +10,28 @@ namespace Tensorflow.Operations
public class CondContext : ControlFlowContext
{
private string _name;

/// <summary>
/// The boolean tensor for the cond predicate
/// </summary>
private Tensor _pred;
public Tensor pred => _pred;

/// <summary>
/// The predicate tensor in this branch
/// </summary>
private Tensor _pivot;

/// <summary>
/// 0 or 1 representing this branch
/// </summary>
private int _branch;

/// <summary>
///
/// </summary>
private List<string> _values = new List<string>();

private Dictionary<string, Tensor> _external_values = new Dictionary<string, Tensor>();

/// <summary>


+ 5
- 0
src/TensorFlowNET.Core/Operations/Operation.Control.cs View File

@@ -32,5 +32,10 @@ namespace Tensorflow
{
_control_flow_context = ctx;
}

public CondContext _get_control_flow_context()
{
return _control_flow_context;
}
}
}

+ 60
- 34
src/TensorFlowNET.Core/Operations/array_ops.py.cs View File

@@ -7,7 +7,8 @@ namespace Tensorflow
{
public class array_ops : Python
{
public static Tensor placeholder_with_default<T>(T input, int[] shape, string name = null) => gen_array_ops.placeholder_with_default(input, shape, name);
public static Tensor placeholder_with_default<T>(T input, int[] shape, string name = null)
=> gen_array_ops.placeholder_with_default(input, shape, name);
public static Tensor zeros(Shape shape, TF_DataType dtype = TF_DataType.TF_FLOAT, string name = null)
{
@@ -111,14 +112,14 @@ namespace Tensorflow
});
}
public static Tensor expand_dims(Tensor input, int axis = -1, string name = null, int dim = -1) => expand_dims_v2(input, axis, name);
public static Tensor expand_dims(Tensor input, int axis = -1, string name = null, int dim = -1)
=> expand_dims_v2(input, axis, name);
private static Tensor expand_dims_v2(Tensor input, int axis, string name = null) => gen_array_ops.expand_dims(input, axis, name);
private static Tensor expand_dims_v2(Tensor input, int axis, string name = null)
=> gen_array_ops.expand_dims(input, axis, name);
public static Tensor rank(Tensor input, string name = null)
{
return math_ops.rank_internal(input, name, optimize: true);
}
=> math_ops.rank_internal(input, name, optimize: true);
/// <summary>
/// Creates a tensor with all elements set to 1.
@@ -132,9 +133,7 @@ namespace Tensorflow
=> ones_like_impl(tensor, dtype, name, optimize);
public static Tensor reshape<T1, T2>(T1 tensor, T2 shape, string name = null)
{
return gen_array_ops.reshape(tensor, shape, null);
}
=> gen_array_ops.reshape(tensor, shape, null);
private static Tensor ones_like_impl<T>(T tensor, TF_DataType dtype, string name, bool optimize = true)
{
@@ -239,14 +238,10 @@ namespace Tensorflow
/// </param>
/// <returns>A `Tensor` of type `out_type`.</returns>
public static Tensor shape(Tensor input, string name = null, TF_DataType out_type = TF_DataType.TF_INT32)
{
return shape_internal(input, name, optimize: true, out_type: out_type);
}
=> shape_internal(input, name, optimize: true, out_type: out_type);
public static Tensor size(Tensor input, string name = null, bool optimize = true, TF_DataType out_type = TF_DataType.TF_INT32)
{
return size_internal(input, name, optimize: optimize, out_type: out_type);
}
=> size_internal(input, name, optimize: optimize, out_type: out_type);
private static Tensor shape_internal(Tensor input, string name = null, bool optimize = true, TF_DataType out_type = TF_DataType.TF_INT32)
{
@@ -323,8 +318,46 @@ namespace Tensorflow
/// <param name="name"></param>
/// <returns></returns>
public static Tensor stop_gradient(Tensor input, string name = null)
=> gen_array_ops.stop_gradient(input, name);
/// <summary>
/// Extracts a strided slice of a tensor (generalized python array indexing).
/// </summary>
/// <param name="input_"></param>
/// <param name="begin"></param>
/// <param name="end"></param>
/// <param name="strides"></param>
/// <param name="begin_mask"></param>
/// <param name="end_mask"></param>
/// <param name="ellipsis_mask"></param>
/// <param name="new_axis_mask"></param>
/// <param name="shrink_axis_mask"></param>
/// <param name="name"></param>
/// <returns></returns>
public static Tensor strided_slice(Tensor input_, Tensor begin, Tensor end,
Tensor strides = null,
int begin_mask = 0,
int end_mask = 0,
int ellipsis_mask = 0,
int new_axis_mask = 0,
int shrink_axis_mask = 0,
string name = null)
{
return gen_array_ops.stop_gradient(input, name);
var op = gen_array_ops.strided_slice(
input: input_,
begin: begin,
end: end,
strides: strides,
begin_mask: begin_mask,
end_mask: end_mask,
ellipsis_mask: ellipsis_mask,
new_axis_mask: new_axis_mask,
shrink_axis_mask: shrink_axis_mask,
name: name);
string parent_name = name;
return op;
}
/// <summary>
@@ -345,14 +378,14 @@ namespace Tensorflow
/// Contains the same data as `input`, but has one or more dimensions of
/// size 1 removed.</returns>
public static Tensor squeeze(Tensor input, int[] axis = null, string name = null, int[] squeeze_dims = null)
{
return gen_array_ops.squeeze(input, axis, name);
}
=> gen_array_ops.squeeze(input, axis, name);
public static Tensor identity(Tensor input, string name = null)
{
return gen_array_ops.identity(input, name);
}
=> gen_array_ops.identity(input, name);
public static Tensor invert_permutation(Tensor x, string name = null)
=> gen_array_ops.invert_permutation(x, name: name);
/// <summary>
/// Computes the shape of a broadcast given symbolic shapes.
/// When shape_x and shape_y are Tensors representing shapes(i.e.the result of
@@ -368,26 +401,19 @@ namespace Tensorflow
/// <param name="shape_y"> A rank 1 integer `Tensor`, representing the shape of y.</param>
/// <returns> A rank 1 integer `Tensor` representing the broadcasted shape.</returns>
public static Tensor broadcast_dynamic_shape(Tensor shape_x, Tensor shape_y)
{
return gen_array_ops.broadcast_args(shape_x, shape_y);
}
=> gen_array_ops.broadcast_args(shape_x, shape_y);
public static Tensor broadcast_static_shape(Tensor shape_x, Tensor shape_y)
{
return Framework.common_shapes.broadcast_shape(shape_x, shape_y);
}
=> Framework.common_shapes.broadcast_shape(shape_x, shape_y);
public static Tensor gather(Tensor @params, Tensor indices, string name = null, int axis = 0)
{
return gen_array_ops.gather_v2(@params, indices, axis, name: name);
}
=> gen_array_ops.gather_v2(@params, indices, axis, name: name);
public static Tensor transpose(Tensor a, int[] perm = null, string name = "transpose", bool conjugate = false)
public static Tensor transpose<T1, T2>(T1 a, T2 perm, string name = "transpose", bool conjugate = false)
{
return with(ops.name_scope(name, "transpose", new { a }), scope =>
{
name = scope;
return gen_array_ops.transpose(a, perm, name);
return gen_array_ops.transpose(a, perm, name: scope);
});
}


+ 16
- 0
src/TensorFlowNET.Core/Operations/control_flow_ops.py.cs View File

@@ -138,6 +138,22 @@ namespace Tensorflow
return gen_array_ops.identity(data, name: name);
}

/// <summary>
/// Forwards `data` to an output determined by `pred`.
/// </summary>
/// <param name="data"></param>
/// <param name="pred"></param>
/// <param name="name"></param>
/// <returns></returns>
public static (Tensor, Tensor) _SwitchRefOrTensor(Tensor data, Tensor pred, string name = "Switch")
{
data = ops.convert_to_tensor_or_indexed_slices(data, name: "data");

ops.colocate_with(data, ignore_existing: true);

return @switch(data, pred, name: name);
}

public static Tensor[] cond<T>(Tensor pred,
Func<T[]> true_fn = null,
Func<T[]> false_fn = null,


+ 8
- 0
src/TensorFlowNET.Core/Operations/control_flow_util.py.cs View File

@@ -1,6 +1,7 @@
using System;
using System.Collections.Generic;
using System.Text;
using Tensorflow.Operations;

namespace Tensorflow
{
@@ -25,5 +26,12 @@ namespace Tensorflow
{
return op.type == "Switch" || op.type == "RefSwitch";
}

public static CondContext GetOutputContext(Operation op)
{
var ctxt = op._get_control_flow_context();

return ctxt;
}
}
}

+ 38
- 1
src/TensorFlowNET.Core/Operations/gen_array_ops.cs View File

@@ -74,6 +74,13 @@ namespace Tensorflow
return _op.outputs[0];
}

public static Tensor invert_permutation(Tensor x, string name = null)
{
var _op = _op_def_lib._apply_op_helper("InvertPermutation", name, new { x });

return _op.outputs[0];
}

public static Tensor log(Tensor x, string name = null)
{
var _op = _op_def_lib._apply_op_helper("Log", name: name, args: new { x });
@@ -163,6 +170,12 @@ namespace Tensorflow
return _op.outputs[0];
}

public static Tensor scatter_nd(Tensor indices, Tensor updates, Tensor[] shape, string name = null)
{
var _op = _op_def_lib._apply_op_helper("ScatterNd", name, new { indices, updates, shape });
return _op.outputs[0];
}

public static Tensor shape(Tensor input, TF_DataType out_type = TF_DataType.TF_INT32, string name = null)
{
var _op = _op_def_lib._apply_op_helper("Shape", name, new { input, out_type });
@@ -181,7 +194,7 @@ namespace Tensorflow
return _op.outputs[0];
}

public static Tensor transpose(Tensor x, int[] perm, string name = null)
public static Tensor transpose<T1, T2>(T1 x, T2 perm, string name = null)
{
var _op = _op_def_lib._apply_op_helper("Transpose", name, new { x, perm });
return _op.outputs[0];
@@ -200,6 +213,30 @@ namespace Tensorflow
return _op.outputs[0];
}

public static Tensor strided_slice(Tensor input, Tensor begin, Tensor end, Tensor strides,
int begin_mask = 0,
int end_mask = 0,
int ellipsis_mask = 0,
int new_axis_mask = 0,
int shrink_axis_mask = 0,
string name = null)
{
var _op = _op_def_lib._apply_op_helper("StridedSlice", name, new
{
input,
begin,
end,
strides,
begin_mask,
end_mask,
ellipsis_mask,
new_axis_mask,
shrink_axis_mask
});

return _op.outputs[0];
}

public static Tensor slice<Tb, Ts>(Tensor input, Tb[] begin, Ts[] size, string name = null)
{
var _op = _op_def_lib._apply_op_helper("Slice", name, new { input, begin, size });


+ 55
- 0
src/TensorFlowNET.Core/Tensors/Tensor.cs View File

@@ -187,6 +187,61 @@ namespace Tensorflow
}
}

public Tensor this[int slice_spec]
{
get
{
var slice_spec_s = new int[] { slice_spec };
var begin = new List<int>();
var end = new List<int>();
var strides = new List<int>();

var index = 0;
var (new_axis_mask, shrink_axis_mask) = (0, 0);
var (begin_mask, end_mask) = (0, 0);
var ellipsis_mask = 0;

foreach(var s in slice_spec_s)
{
{
begin.Add(s);
end.Add(s + 1);
strides.Add(1);
shrink_axis_mask |= (1 << index);
}
index += 1;
}

return with(ops.name_scope(null, "strided_slice", new { begin, end, strides }), scope =>
{
string name = scope;
if(begin != null)
{
var (packed_begin, packed_end, packed_strides) =
(array_ops.stack(begin.ToArray()),
array_ops.stack(end.ToArray()),
array_ops.stack(strides.ToArray()));

return gen_array_ops.strided_slice(
this,
packed_begin,
packed_end,
packed_strides,
begin_mask: begin_mask,
end_mask: end_mask,
shrink_axis_mask: shrink_axis_mask,
new_axis_mask: new_axis_mask,
ellipsis_mask: ellipsis_mask,
name: name);
}

throw new NotImplementedException("");
});
}
}

public override string ToString()
{
if(NDims == 0)


Loading…
Cancel
Save