@@ -123,7 +123,7 @@ namespace Tensorflow | |||||
bytestream.Read(buf, 0, buf.Length); | bytestream.Read(buf, 0, buf.Length); | ||||
var data = np.frombuffer(buf, np.@byte); | |||||
var data = np.frombuffer(buf, (rows, cols), np.@byte); | |||||
data = data.reshape((num_images, rows, cols, 1)); | data = data.reshape((num_images, rows, cols, 1)); | ||||
return data; | return data; | ||||
@@ -148,7 +148,7 @@ namespace Tensorflow | |||||
bytestream.Read(buf, 0, buf.Length); | bytestream.Read(buf, 0, buf.Length); | ||||
var labels = np.frombuffer(buf, np.uint8); | |||||
var labels = np.frombuffer(buf, new Shape(num_items), np.uint8); | |||||
if (one_hot) | if (one_hot) | ||||
return DenseToOneHot(labels, num_classes); | return DenseToOneHot(labels, num_classes); | ||||
@@ -53,7 +53,7 @@ namespace Tensorflow.Eager | |||||
public EagerTensor(Array array, Shape shape) : base(array, shape) | public EagerTensor(Array array, Shape shape) : base(array, shape) | ||||
=> NewEagerTensorHandle(_handle); | => NewEagerTensorHandle(_handle); | ||||
public EagerTensor(byte[] bytes, TF_DataType dtype) : base(bytes, dtype) | |||||
public EagerTensor(byte[] bytes, Shape shape, TF_DataType dtype) : base(bytes, shape, dtype) | |||||
=> NewEagerTensorHandle(_handle); | => NewEagerTensorHandle(_handle); | ||||
void NewEagerTensorHandle(IntPtr h) | void NewEagerTensorHandle(IntPtr h) | ||||
@@ -33,9 +33,9 @@ namespace Tensorflow.NumPy | |||||
return new NDArray(tensor); | return new NDArray(tensor); | ||||
} | } | ||||
public NDArray frombuffer(byte[] bytes, TF_DataType dtype) | |||||
public NDArray frombuffer(byte[] bytes, Shape shape, TF_DataType dtype) | |||||
{ | { | ||||
throw new NotImplementedException(""); | |||||
return new NDArray(bytes, shape, dtype); | |||||
} | } | ||||
public NDArray linspace<T>(T start, T stop, int num = 50, bool endpoint = true, bool retstep = false, | public NDArray linspace<T>(T start, T stop, int num = 50, bool endpoint = true, bool retstep = false, | ||||
@@ -0,0 +1,14 @@ | |||||
using System; | |||||
using System.Collections; | |||||
using System.Collections.Generic; | |||||
using System.Numerics; | |||||
using System.Text; | |||||
namespace Tensorflow.NumPy | |||||
{ | |||||
public partial class np | |||||
{ | |||||
public static NDArray squeeze(NDArray x1, Axis? axis = null) | |||||
=> new NDArray(array_ops.squeeze(x1, axis)); | |||||
} | |||||
} |
@@ -18,7 +18,7 @@ namespace Tensorflow.NumPy | |||||
public NDArray(Array value, Shape? shape = null) => Init(value, shape); | public NDArray(Array value, Shape? shape = null) => Init(value, shape); | ||||
public NDArray(Shape shape, TF_DataType dtype = TF_DataType.TF_DOUBLE) => Init(shape, dtype: dtype); | public NDArray(Shape shape, TF_DataType dtype = TF_DataType.TF_DOUBLE) => Init(shape, dtype: dtype); | ||||
public NDArray(Tensor value, Shape? shape = null) => Init(value, shape); | public NDArray(Tensor value, Shape? shape = null) => Init(value, shape); | ||||
public NDArray(byte[] bytes, TF_DataType dtype) => Init(bytes, dtype); | |||||
public NDArray(byte[] bytes, Shape shape, TF_DataType dtype) => Init(bytes, shape, dtype); | |||||
public static NDArray Scalar<T>(T value) where T : unmanaged | public static NDArray Scalar<T>(T value) where T : unmanaged | ||||
=> value switch | => value switch | ||||
@@ -70,9 +70,10 @@ namespace Tensorflow.NumPy | |||||
_tensor.SetReferencedByNDArray(); | _tensor.SetReferencedByNDArray(); | ||||
} | } | ||||
void Init(byte[] bytes, TF_DataType dtype) | |||||
void Init(byte[] bytes, Shape shape, TF_DataType dtype) | |||||
{ | { | ||||
_tensor = new Tensor(bytes, shape, dtype); | |||||
_tensor.SetReferencedByNDArray(); | |||||
} | } | ||||
} | } | ||||
} | } |
@@ -33,8 +33,8 @@ namespace Tensorflow.NumPy | |||||
public static NDArray full<T>(Shape shape, T fill_value) | public static NDArray full<T>(Shape shape, T fill_value) | ||||
=> new NDArray(tf.fill(tf.constant(shape), fill_value)); | => new NDArray(tf.fill(tf.constant(shape), fill_value)); | ||||
public static NDArray frombuffer(byte[] bytes, TF_DataType dtype) | |||||
=> tf.numpy.frombuffer(bytes, dtype); | |||||
public static NDArray frombuffer(byte[] bytes, Shape shape, TF_DataType dtype) | |||||
=> tf.numpy.frombuffer(bytes, shape, dtype); | |||||
public static NDArray linspace<T>(T start, T stop, int num = 50, bool endpoint = true, bool retstep = false, | public static NDArray linspace<T>(T start, T stop, int num = 50, bool endpoint = true, bool retstep = false, | ||||
TF_DataType dtype = TF_DataType.TF_DOUBLE, int axis = 0) where T : unmanaged | TF_DataType dtype = TF_DataType.TF_DOUBLE, int axis = 0) where T : unmanaged | ||||
@@ -59,9 +59,6 @@ namespace Tensorflow.NumPy | |||||
public static NDArray frombuffer(byte[] bytes, string dtype) | public static NDArray frombuffer(byte[] bytes, string dtype) | ||||
=> throw new NotImplementedException(""); | => throw new NotImplementedException(""); | ||||
public static NDArray squeeze(NDArray x1) | |||||
=> throw new NotImplementedException(""); | |||||
public static bool allclose(NDArray a, NDArray b, double rtol = 1.0E-5, double atol = 1.0E-8, | public static bool allclose(NDArray a, NDArray b, double rtol = 1.0E-5, double atol = 1.0E-8, | ||||
bool equal_nan = false) => throw new NotImplementedException(""); | bool equal_nan = false) => throw new NotImplementedException(""); | ||||
@@ -380,7 +380,8 @@ namespace Tensorflow | |||||
attr_value.List.Type.AddRange((value as IList<TF_DataType>).Select(x => _MakeType(x, attr_def))); | attr_value.List.Type.AddRange((value as IList<TF_DataType>).Select(x => _MakeType(x, attr_def))); | ||||
break; | break; | ||||
case "list(int)": | case "list(int)": | ||||
attr_value.List.I.AddRange((value as int[]).Select(x => Convert.ToInt64(x))); | |||||
if (value != null) | |||||
attr_value.List.I.AddRange((value as int[]).Select(x => Convert.ToInt64(x))); | |||||
break; | break; | ||||
case "bool": | case "bool": | ||||
attr_value.B = (bool)value; | attr_value.B = (bool)value; | ||||
@@ -96,7 +96,7 @@ namespace Tensorflow | |||||
public Tensor(Shape shape, TF_DataType dtype) => InitTensor(shape, dtype); | public Tensor(Shape shape, TF_DataType dtype) => InitTensor(shape, dtype); | ||||
public Tensor(Array array, Shape? shape = null) => InitTensor(array, shape); | public Tensor(Array array, Shape? shape = null) => InitTensor(array, shape); | ||||
public Tensor(byte[] bytes, TF_DataType dtype) => InitTensor(bytes, dtype); | |||||
public Tensor(byte[] bytes, Shape shape, TF_DataType dtype) => InitTensor(shape, bytes, dtype); | |||||
public Tensor(Operation op, int value_index, TF_DataType dtype) | public Tensor(Operation op, int value_index, TF_DataType dtype) | ||||
{ | { | ||||
@@ -113,12 +113,12 @@ namespace Tensorflow | |||||
isCreatedInGraphMode = !tf.executing_eagerly(); | isCreatedInGraphMode = !tf.executing_eagerly(); | ||||
} | } | ||||
protected unsafe void InitTensor(byte[] bytes, TF_DataType dtype) | |||||
protected unsafe void InitTensor(Shape shape, byte[] bytes, TF_DataType dtype) | |||||
{ | { | ||||
if (dtype == TF_DataType.TF_STRING) | if (dtype == TF_DataType.TF_STRING) | ||||
_handle = StringTensor(new byte[][] { bytes }, Shape.Scalar); | _handle = StringTensor(new byte[][] { bytes }, Shape.Scalar); | ||||
else | else | ||||
throw new NotImplementedException(""); | |||||
_handle = TF_NewTensor(bytes, shape, dtype); | |||||
isCreatedInGraphMode = !tf.executing_eagerly(); | isCreatedInGraphMode = !tf.executing_eagerly(); | ||||
} | } | ||||
@@ -104,13 +104,26 @@ namespace Tensorflow | |||||
return TF_NewTensor(dataType, dims, num_dims, data, len, EmptyDeallocator, DeallocatorArgs.Empty); | return TF_NewTensor(dataType, dims, num_dims, data, len, EmptyDeallocator, DeallocatorArgs.Empty); | ||||
} | } | ||||
public static unsafe IntPtr TF_NewTensor(byte[] data, Shape shape, TF_DataType dtype) | |||||
{ | |||||
var length = data.Length; | |||||
var handle = TF_AllocateTensor(dtype, shape.dims, shape.ndim, (ulong)length); | |||||
var tensor = TF_TensorData(handle); | |||||
if (tensor == IntPtr.Zero) | |||||
throw new TensorflowException("AllocateTensor failed."); | |||||
fixed (void* addr = &data[0]) | |||||
System.Buffer.MemoryCopy(addr, tensor.ToPointer(), length, length); | |||||
return handle; | |||||
} | |||||
public static unsafe IntPtr TF_NewTensor(Shape shape, TF_DataType dtype, void* data) | public static unsafe IntPtr TF_NewTensor(Shape shape, TF_DataType dtype, void* data) | ||||
{ | { | ||||
var length = shape.size * dtype.get_datatype_size(); | var length = shape.size * dtype.get_datatype_size(); | ||||
var handle = TF_AllocateTensor(dtype, shape.dims, shape.ndim, (ulong)length); | var handle = TF_AllocateTensor(dtype, shape.dims, shape.ndim, (ulong)length); | ||||
var tensor = TF_TensorData(handle); | var tensor = TF_TensorData(handle); | ||||
if (tensor != IntPtr.Zero) | |||||
System.Buffer.MemoryCopy(data, tensor.ToPointer(), length, length); | |||||
if (tensor == IntPtr.Zero) | |||||
throw new TensorflowException("AllocateTensor failed."); | |||||
System.Buffer.MemoryCopy(data, tensor.ToPointer(), length, length); | |||||
return handle; | return handle; | ||||
} | } | ||||
@@ -100,7 +100,7 @@ namespace Tensorflow | |||||
// non ascii char | // non ascii char | ||||
if (dtype == TF_DataType.TF_STRING && value is byte[] bytes) | if (dtype == TF_DataType.TF_STRING && value is byte[] bytes) | ||||
return new EagerTensor(bytes, TF_DataType.TF_STRING); | |||||
return new EagerTensor(bytes, Shape.Scalar, TF_DataType.TF_STRING); | |||||
switch (value) | switch (value) | ||||
{ | { | ||||
@@ -66,7 +66,7 @@ namespace Tensorflow | |||||
if (shape.ndim > 0 && tensor.TensorContent.Length > 0) | if (shape.ndim > 0 && tensor.TensorContent.Length > 0) | ||||
{ | { | ||||
return np.frombuffer(tensor.TensorContent.ToByteArray(), tensor_dtype).reshape(shape); | |||||
return np.frombuffer(tensor.TensorContent.ToByteArray(), shape, tensor_dtype); | |||||
} | } | ||||
else if (tensor.Dtype == DataType.DtHalf || tensor.Dtype == DataType.DtBfloat16) | else if (tensor.Dtype == DataType.DtHalf || tensor.Dtype == DataType.DtBfloat16) | ||||
{ | { | ||||