diff --git a/src/TensorFlowNET.Keras/Layers/LayersApi.cs b/src/TensorFlowNET.Keras/Layers/LayersApi.cs
index 91e5e85a..aa4f416f 100644
--- a/src/TensorFlowNET.Keras/Layers/LayersApi.cs
+++ b/src/TensorFlowNET.Keras/Layers/LayersApi.cs
@@ -86,35 +86,30 @@ namespace Tensorflow.Keras.Layers
/// A tensor of rank 3 representing activation(conv1d(inputs, kernel) + bias).
public Conv1D Conv1D(int filters,
Shape kernel_size,
- int? strides = null,
+ int strides = 1,
string padding = "valid",
- string data_format = null,
- int? dilation_rate = null,
+ string data_format = "channels_last",
+ int dilation_rate = 1,
int groups = 1,
string activation = null,
bool use_bias = true,
string kernel_initializer = "glorot_uniform",
string bias_initializer = "zeros")
- {
- // Special case: Conv1D will be implemented as Conv2D with H=1, so we need to add a 1-sized dimension to the kernel.
- // Lower-level logic handles the stride and dilation_rate, but the kernel_size needs to be set properly here.
-
- return new Conv1D(new Conv1DArgs
+ => new Conv1D(new Conv1DArgs
{
Rank = 1,
Filters = filters,
KernelSize = kernel_size ?? new Shape(1, 5),
- Strides = strides == null ? 1 : strides,
+ Strides = strides,
Padding = padding,
DataFormat = data_format,
- DilationRate = dilation_rate == null ? 1 : dilation_rate,
+ DilationRate = dilation_rate,
Groups = groups,
UseBias = use_bias,
Activation = GetActivationByName(activation),
KernelInitializer = GetInitializerByName(kernel_initializer),
BiasInitializer = GetInitializerByName(bias_initializer)
});
- }
///
/// 2D convolution layer (e.g. spatial convolution over images).