@@ -9,8 +9,6 @@ Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "TensorFlowNET.Examples", "t | |||
EndProject | |||
Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "TensorFlowNET.Core", "src\TensorFlowNET.Core\TensorFlowNET.Core.csproj", "{FD682AC0-7B2D-45D3-8B0D-C6D678B04144}" | |||
EndProject | |||
Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Keras.Core", "src\KerasNET.Core\Keras.Core.csproj", "{902E188F-A953-43B4-9991-72BAB1697BC3}" | |||
EndProject | |||
Project("{6EC3EE1D-3C4E-46DD-8F32-0CC8E7565705}") = "TensorFlowNET.Examples.FSharp", "test\TensorFlowNET.Examples.FSharp\TensorFlowNET.Examples.FSharp.fsproj", "{62BC3801-F0D3-44A9-A0AC-712F40C8F961}" | |||
EndProject | |||
Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "TensorFlowBenchmark", "src\TensorFlowNet.Benchmarks\TensorFlowBenchmark.csproj", "{68861442-971A-4196-876E-C9330F0B3C54}" | |||
@@ -41,10 +39,6 @@ Global | |||
{FD682AC0-7B2D-45D3-8B0D-C6D678B04144}.Debug|Any CPU.Build.0 = Debug|Any CPU | |||
{FD682AC0-7B2D-45D3-8B0D-C6D678B04144}.Release|Any CPU.ActiveCfg = Release|Any CPU | |||
{FD682AC0-7B2D-45D3-8B0D-C6D678B04144}.Release|Any CPU.Build.0 = Release|Any CPU | |||
{902E188F-A953-43B4-9991-72BAB1697BC3}.Debug|Any CPU.ActiveCfg = Debug|Any CPU | |||
{902E188F-A953-43B4-9991-72BAB1697BC3}.Debug|Any CPU.Build.0 = Debug|Any CPU | |||
{902E188F-A953-43B4-9991-72BAB1697BC3}.Release|Any CPU.ActiveCfg = Release|Any CPU | |||
{902E188F-A953-43B4-9991-72BAB1697BC3}.Release|Any CPU.Build.0 = Release|Any CPU | |||
{62BC3801-F0D3-44A9-A0AC-712F40C8F961}.Debug|Any CPU.ActiveCfg = Debug|Any CPU | |||
{62BC3801-F0D3-44A9-A0AC-712F40C8F961}.Debug|Any CPU.Build.0 = Debug|Any CPU | |||
{62BC3801-F0D3-44A9-A0AC-712F40C8F961}.Release|Any CPU.ActiveCfg = Release|Any CPU | |||
@@ -420,7 +420,20 @@ namespace Tensorflow | |||
public List<T> get_collection<T>(string name, string scope = null) | |||
{ | |||
return _collections.ContainsKey(name) ? _collections[name] as List<T> : new List<T>(); | |||
List<T> t = default; | |||
var collection = _collections.ContainsKey(name) ? _collections[name] : new List<T>(); | |||
switch (collection) | |||
{ | |||
case List<VariableV1> list: | |||
t = list.Select(x => (T)(object)x).ToList(); | |||
break; | |||
case List<RefVariable> list: | |||
t = list.Select(x => (T)(object)x).ToList(); | |||
break; | |||
default: | |||
throw new NotImplementedException($"get_collection<{typeof(T).FullName}>"); | |||
} | |||
return t; | |||
} | |||
public object get_collection_ref(string name) | |||
@@ -17,6 +17,7 @@ | |||
using System; | |||
using System.Linq; | |||
using System.Runtime.InteropServices; | |||
using static Tensorflow.Binding; | |||
namespace Tensorflow | |||
{ | |||
@@ -48,6 +49,20 @@ namespace Tensorflow | |||
public TF_Output this[int index] => _tf_output(index); | |||
/// <summary> | |||
/// List this operation's output types. | |||
/// </summary> | |||
public TF_DataType[] _output_types | |||
{ | |||
get | |||
{ | |||
var output_types = range(NumOutputs) | |||
.Select(i => OutputType(i)) | |||
.ToArray(); | |||
return output_types; | |||
} | |||
} | |||
public unsafe TF_Input[] OutputConsumers(int index, int max_consumers) | |||
{ | |||
var handle = Marshal.AllocHGlobal(Marshal.SizeOf<TF_Input>()); | |||
@@ -198,7 +198,7 @@ namespace Tensorflow | |||
/// <param name="max_consumers">int</param> | |||
/// <returns></returns> | |||
[DllImport(TensorFlowLibName)] | |||
public static extern unsafe int TF_OperationOutputConsumers(TF_Output oper_out, IntPtr consumers, int max_consumers); | |||
public static extern int TF_OperationOutputConsumers(TF_Output oper_out, IntPtr consumers, int max_consumers); | |||
[DllImport(TensorFlowLibName)] | |||
public static extern TF_DataType TF_OperationOutputType(TF_Output oper_out); | |||
@@ -13,7 +13,7 @@ namespace Tensorflow.Train | |||
bool _zero_debias; | |||
string _name; | |||
public string name => _name; | |||
List<VariableV1> _averages; | |||
Dictionary<RefVariable, RefVariable> _averages; | |||
public ExponentialMovingAverage(float decay, int? num_updates = null, bool zero_debias = false, | |||
string name = "ExponentialMovingAverage") | |||
@@ -22,7 +22,7 @@ namespace Tensorflow.Train | |||
_num_updates = num_updates; | |||
_zero_debias = zero_debias; | |||
_name = name; | |||
_averages = new List<VariableV1>(); | |||
_averages = new Dictionary<RefVariable, RefVariable>(); | |||
} | |||
/// <summary> | |||
@@ -37,16 +37,38 @@ namespace Tensorflow.Train | |||
foreach(var var in var_list) | |||
{ | |||
if (!_averages.Contains(var)) | |||
if (!_averages.ContainsKey(var)) | |||
{ | |||
ops.init_scope(); | |||
var slot = new SlotCreator(); | |||
var.initialized_value(); | |||
// var avg = slot.create_zeros_slot | |||
var slot_creator = new SlotCreator(); | |||
var value = var.initialized_value(); | |||
var avg = slot_creator.create_slot(var, | |||
value, | |||
name, | |||
colocate_with_primary: true); | |||
ops.add_to_collection(ops.GraphKeys.MOVING_AVERAGE_VARIABLES, var); | |||
_averages[var] = avg; | |||
} | |||
} | |||
throw new NotImplementedException(""); | |||
return tf_with(ops.name_scope(name), scope => | |||
{ | |||
var decay = ops.convert_to_tensor(_decay, name: "decay"); | |||
if (_num_updates.HasValue) | |||
{ | |||
throw new NotImplementedException("ExponentialMovingAverage.apply"); | |||
} | |||
var updates = new List<Tensor>(); | |||
foreach (var var in var_list) | |||
{ | |||
var zero_debias = false;// _averages[var] in zero_debias_true | |||
var ama = moving_averages.assign_moving_average(_averages[var], var, decay, zero_debias: zero_debias); | |||
updates.Add(ama); | |||
} | |||
return control_flow_ops.group(updates.ToArray(), name: scope); | |||
}); | |||
} | |||
} | |||
} |
@@ -22,6 +22,24 @@ namespace Tensorflow.Train | |||
{ | |||
public class SlotCreator | |||
{ | |||
/// <summary> | |||
/// Create a slot initialized to the given value. | |||
/// </summary> | |||
/// <param name="primary"></param> | |||
/// <param name="val"></param> | |||
/// <param name="name"></param> | |||
/// <param name="colocate_with_primary"></param> | |||
/// <returns></returns> | |||
public RefVariable create_slot(RefVariable primary, Tensor val, string name, bool colocate_with_primary = true) | |||
{ | |||
var validate_shape = val.TensorShape.is_fully_defined(); | |||
var prefix = primary.op.name; | |||
return tf_with(tf.variable_scope(name: null, prefix + "/" + name), delegate | |||
{ | |||
return _create_slot_var(primary, val, "", validate_shape, null, TF_DataType.DtInvalid); | |||
}); | |||
} | |||
/// <summary> | |||
/// Create a slot initialized to 0 with same shape as the primary object. | |||
/// </summary> | |||
@@ -73,7 +91,7 @@ namespace Tensorflow.Train | |||
/// <param name="shape"></param> | |||
/// <param name="dtype"></param> | |||
/// <returns></returns> | |||
private RefVariable _create_slot_var(VariableV1 primary, IInitializer val, string scope, bool validate_shape, | |||
private RefVariable _create_slot_var(VariableV1 primary, object val, string scope, bool validate_shape, | |||
TensorShape shape, TF_DataType dtype) | |||
{ | |||
bool use_resource = primary is ResourceVariable; | |||
@@ -0,0 +1,32 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using static Tensorflow.Binding; | |||
namespace Tensorflow.Train | |||
{ | |||
public class moving_averages | |||
{ | |||
/// <summary> | |||
/// Compute the moving average of a variable. | |||
/// </summary> | |||
/// <param name="variable"></param> | |||
/// <param name="value"></param> | |||
/// <param name="decay"></param> | |||
/// <param name="zero_debias"></param> | |||
/// <param name="name"></param> | |||
/// <returns></returns> | |||
public static Tensor assign_moving_average(RefVariable variable, RefVariable value, Tensor decay, | |||
bool zero_debias = true, string name = null) | |||
{ | |||
tf_with(ops.name_scope(name, "", new { variable, value, decay }), scope => | |||
{ | |||
decay = ops.convert_to_tensor(1.0f - decay, name: "decay"); | |||
if (decay.dtype != variable.dtype.as_base_dtype()) | |||
decay = math_ops.cast(decay, variable.dtype.as_base_dtype()); | |||
}); | |||
throw new NotImplementedException("assign_moving_average"); | |||
} | |||
} | |||
} |
@@ -17,6 +17,7 @@ | |||
using Google.Protobuf; | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Linq; | |||
using static Tensorflow.Binding; | |||
namespace Tensorflow | |||
@@ -176,7 +177,7 @@ namespace Tensorflow | |||
// If 'initial_value' makes use of other variables, make sure we don't | |||
// have an issue if these other variables aren't initialized first by | |||
// using their initialized_value() method. | |||
var _initial_value2 = _try_guard_against_uninitialized_dependencies(_initial_value); | |||
var _initial_value2 = _try_guard_against_uninitialized_dependencies(name, _initial_value); | |||
_initializer_op = gen_state_ops.assign(_variable, _initial_value2, validate_shape).op; | |||
@@ -215,9 +216,9 @@ namespace Tensorflow | |||
/// Attempt to guard against dependencies on uninitialized variables. | |||
/// </summary> | |||
/// <param name="initial_value"></param> | |||
private Tensor _try_guard_against_uninitialized_dependencies(Tensor initial_value) | |||
private Tensor _try_guard_against_uninitialized_dependencies(string name, Tensor initial_value) | |||
{ | |||
return _safe_initial_value_from_tensor(initial_value, new Dictionary<string, Operation>()); | |||
return _safe_initial_value_from_tensor(name, initial_value, op_cache: new Dictionary<string, Operation>()); | |||
} | |||
/// <summary> | |||
@@ -226,19 +227,19 @@ namespace Tensorflow | |||
/// <param name="tensor">A `Tensor`. The tensor to replace.</param> | |||
/// <param name="op_cache">A dict mapping operation names to `Operation`s.</param> | |||
/// <returns>A `Tensor` compatible with `tensor`.</returns> | |||
private Tensor _safe_initial_value_from_tensor(Tensor tensor, Dictionary<string, Operation> op_cache) | |||
private Tensor _safe_initial_value_from_tensor(string name, Tensor tensor, Dictionary<string, Operation> op_cache) | |||
{ | |||
var op = tensor.op; | |||
var new_op = op_cache.ContainsKey(op.name) ? op_cache[op.name] : null; | |||
if(new_op == null) | |||
{ | |||
new_op = _safe_initial_value_from_op(op, op_cache); | |||
new_op = _safe_initial_value_from_op(name, op, op_cache); | |||
op_cache[op.name] = new_op; | |||
} | |||
return new_op.outputs[tensor.value_index]; | |||
} | |||
private Operation _safe_initial_value_from_op(Operation op, Dictionary<string, Operation> op_cache) | |||
private Operation _safe_initial_value_from_op(string name, Operation op, Dictionary<string, Operation> op_cache) | |||
{ | |||
var op_type = op.node_def.Op; | |||
switch (op_type) | |||
@@ -250,13 +251,50 @@ namespace Tensorflow | |||
case "Variable": | |||
case "VariableV2": | |||
case "VarHandleOp": | |||
break; | |||
var initialized_value = _find_initialized_value_for_variable(op); | |||
return initialized_value == null ? op : initialized_value.op; | |||
} | |||
// Recursively build initializer expressions for inputs. | |||
var modified = false; | |||
var new_op_inputs = new List<Tensor>(); | |||
foreach (var op_input in op.inputs) | |||
{ | |||
var new_op_input = _safe_initial_value_from_tensor(name, op_input as Tensor, op_cache); | |||
new_op_inputs.Add(new_op_input); | |||
modified = modified || new_op_input != op_input; | |||
} | |||
// If at least one input was modified, replace the op. | |||
if (modified) | |||
{ | |||
var new_op_type = op_type; | |||
if (new_op_type == "RefSwitch") | |||
new_op_type = "Switch"; | |||
var new_op_name = op.node_def.Name + "_" + name; | |||
new_op_name = new_op_name.Replace(":", "_"); | |||
var attrs = new Dictionary<string, AttrValue>(); | |||
attrs[op.node_def.Name] = op.node_def.Attr.ElementAt(0).Value; | |||
/*return op.graph.create_op(new_op_type, new_op_inputs.ToArray(), op._output_types, | |||
name: new_op_name, attrs: attrs);*/ | |||
} | |||
return op; | |||
} | |||
private Operation _find_initialized_value_for_variable(Operation variable_op) | |||
{ | |||
var var_names = new[] { variable_op.node_def.Name, variable_op.node_def.Name + ":0" }; | |||
foreach(var collection_name in new[]{tf.GraphKeys.GLOBAL_VARIABLES, | |||
tf.GraphKeys.LOCAL_VARIABLES }) | |||
{ | |||
foreach (var var in variable_op.graph.get_collection<RefVariable>(collection_name)) | |||
if (var_names.Contains(var.name)) | |||
return var.initialized_value(); | |||
} | |||
return null; | |||
} | |||
/// <summary> | |||
/// Assigns a new value to the variable. | |||
/// </summary> | |||
@@ -318,6 +356,15 @@ namespace Tensorflow | |||
return array_ops.identity(_variable, name: "read"); | |||
} | |||
/// <summary> | |||
/// Returns the Tensor used as the initial value for the variable. | |||
/// </summary> | |||
/// <returns></returns> | |||
private ITensorOrOperation initial_value() | |||
{ | |||
return _initial_value; | |||
} | |||
public Tensor is_variable_initialized(RefVariable variable) | |||
{ | |||
return state_ops.is_variable_initialized(variable); | |||
@@ -326,10 +373,9 @@ namespace Tensorflow | |||
public Tensor initialized_value() | |||
{ | |||
ops.init_scope(); | |||
throw new NotImplementedException(""); | |||
/*return control_flow_ops.cond(is_variable_initialized(this), | |||
return control_flow_ops.cond(is_variable_initialized(this), | |||
read_value, | |||
() => initial_value);*/ | |||
initial_value); | |||
} | |||
} | |||
} |
@@ -149,7 +149,8 @@ namespace Tensorflow | |||
public static Tensor is_variable_initialized(RefVariable @ref, string name = null) | |||
{ | |||
throw new NotImplementedException(""); | |||
var _op = _op_def_lib._apply_op_helper("IsVariableInitialized", name: name, args: new { @ref }); | |||
return _op.output; | |||
} | |||
} | |||
} |
@@ -52,6 +52,8 @@ namespace Tensorflow | |||
/// </summary> | |||
public const string LOSSES_ = "losses"; | |||
public const string MOVING_AVERAGE_VARIABLES = "moving_average_variables"; | |||
/// <summary> | |||
/// Key to collect Variable objects that are global (shared across machines). | |||
/// Default collection for all variables, except local ones. | |||
@@ -100,6 +102,12 @@ namespace Tensorflow | |||
/// </summary> | |||
public string _STREAMING_MODEL_PORTS => _STREAMING_MODEL_PORTS_; | |||
/// <summary> | |||
/// Key to collect local variables that are local to the machine and are not | |||
/// saved/restored. | |||
/// </summary> | |||
public string LOCAL_VARIABLES = "local_variables"; | |||
/// <summary> | |||
/// Key to collect losses | |||
/// </summary> | |||
@@ -109,7 +117,7 @@ namespace Tensorflow | |||
/// Key to collect Variable objects that are global (shared across machines). | |||
/// Default collection for all variables, except local ones. | |||
/// </summary> | |||
public string GLOBAL_VARIABLES => GLOBAL_VARIABLES_; | |||
public string GLOBAL_VARIABLES = GLOBAL_VARIABLES_; | |||
public string TRAIN_OP => TRAIN_OP_; | |||
@@ -1,6 +1,7 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.IO; | |||
using System.Linq; | |||
using System.Text; | |||
using Tensorflow; | |||
using static Tensorflow.Binding; | |||
@@ -47,6 +48,9 @@ namespace TensorFlowNET.Examples.ImageProcessing.YOLO | |||
YOLOv3 model; | |||
VariableV1[] net_var; | |||
Tensor giou_loss, conf_loss, prob_loss; | |||
RefVariable global_step; | |||
Tensor learn_rate; | |||
Tensor loss; | |||
#endregion | |||
public bool Run() | |||
@@ -98,11 +102,45 @@ namespace TensorFlowNET.Examples.ImageProcessing.YOLO | |||
(giou_loss, conf_loss, prob_loss) = model.compute_loss( | |||
label_sbbox, label_mbbox, label_lbbox, | |||
true_sbboxes, true_mbboxes, true_lbboxes); | |||
loss = giou_loss + conf_loss + prob_loss; | |||
}); | |||
Tensor global_step_update = null; | |||
tf_with(tf.name_scope("learn_rate"), scope => | |||
{ | |||
global_step = tf.Variable(1.0, dtype: tf.float64, trainable: false, name: "global_step"); | |||
var warmup_steps = tf.constant(warmup_periods * steps_per_period, | |||
dtype: tf.float64, name: "warmup_steps"); | |||
var train_steps = tf.constant((first_stage_epochs + second_stage_epochs) * steps_per_period, | |||
dtype: tf.float64, name: "train_steps"); | |||
learn_rate = tf.cond( | |||
pred: global_step < warmup_steps, | |||
true_fn: delegate | |||
{ | |||
return global_step / warmup_steps * learn_rate_init; | |||
}, | |||
false_fn: delegate | |||
{ | |||
return learn_rate_end + 0.5 * (learn_rate_init - learn_rate_end) * | |||
(1 + tf.cos( | |||
(global_step - warmup_steps) / (train_steps - warmup_steps) * Math.PI)); | |||
} | |||
); | |||
global_step_update = tf.assign_add(global_step, 1.0f); | |||
}); | |||
Operation moving_ave = null; | |||
tf_with(tf.name_scope("define_weight_decay"), scope => | |||
{ | |||
var moving_ave = tf.train.ExponentialMovingAverage(moving_ave_decay).apply((RefVariable[])tf.trainable_variables()); | |||
var emv = tf.train.ExponentialMovingAverage(moving_ave_decay); | |||
var vars = tf.trainable_variables().Select(x => (RefVariable)x).ToArray(); | |||
moving_ave = emv.apply(vars); | |||
}); | |||
tf_with(tf.name_scope("define_first_stage_train"), scope => | |||
{ | |||
}); | |||
return graph; | |||
@@ -23,6 +23,8 @@ namespace TensorFlowNET.Examples.ImageProcessing.YOLO | |||
Tensor conv_mbbox; | |||
Tensor conv_sbbox; | |||
Tensor pred_sbbox; | |||
Tensor pred_mbbox; | |||
Tensor pred_lbbox; | |||
public YOLOv3(Config cfg_, Tensor input_data_, Tensor trainable_) | |||
{ | |||
@@ -46,12 +48,12 @@ namespace TensorFlowNET.Examples.ImageProcessing.YOLO | |||
tf_with(tf.variable_scope("pred_mbbox"), scope => | |||
{ | |||
pred_sbbox = decode(conv_sbbox, anchors[0], strides[0]); | |||
pred_mbbox = decode(conv_mbbox, anchors[1], strides[1]); | |||
}); | |||
tf_with(tf.variable_scope("pred_lbbox"), scope => | |||
{ | |||
pred_sbbox = decode(conv_sbbox, anchors[0], strides[0]); | |||
pred_lbbox = decode(conv_lbbox, anchors[2], strides[2]); | |||
}); | |||
} | |||
@@ -144,6 +146,8 @@ namespace TensorFlowNET.Examples.ImageProcessing.YOLO | |||
{ | |||
Tensor giou_loss = null, conf_loss = null, prob_loss = null; | |||
(Tensor, Tensor, Tensor) loss_sbbox = (null, null, null); | |||
(Tensor, Tensor, Tensor) loss_mbbox = (null, null, null); | |||
(Tensor, Tensor, Tensor) loss_lbbox = (null, null, null); | |||
tf_with(tf.name_scope("smaller_box_loss"), delegate | |||
{ | |||
@@ -151,6 +155,33 @@ namespace TensorFlowNET.Examples.ImageProcessing.YOLO | |||
anchors: anchors[0], stride: strides[0]); | |||
}); | |||
tf_with(tf.name_scope("medium_box_loss"), delegate | |||
{ | |||
loss_mbbox = loss_layer(conv_mbbox, pred_mbbox, label_mbbox, true_mbbox, | |||
anchors: anchors[1], stride: strides[1]); | |||
}); | |||
tf_with(tf.name_scope("bigger_box_loss"), delegate | |||
{ | |||
loss_lbbox = loss_layer(conv_lbbox, pred_lbbox, label_lbbox, true_lbbox, | |||
anchors: anchors[2], stride: strides[2]); | |||
}); | |||
tf_with(tf.name_scope("giou_loss"), delegate | |||
{ | |||
giou_loss = loss_sbbox.Item1 + loss_mbbox.Item1 + loss_lbbox.Item1; | |||
}); | |||
tf_with(tf.name_scope("conf_loss"), delegate | |||
{ | |||
conf_loss = loss_sbbox.Item2 + loss_mbbox.Item2 + loss_lbbox.Item2; | |||
}); | |||
tf_with(tf.name_scope("prob_loss"), delegate | |||
{ | |||
prob_loss = loss_sbbox.Item3 + loss_mbbox.Item3 + loss_lbbox.Item3; | |||
}); | |||
return (giou_loss, conf_loss, prob_loss); | |||
} | |||
@@ -14,6 +14,10 @@ | |||
<OutputPath>bin\release-gpu</OutputPath> | |||
</PropertyGroup> | |||
<ItemGroup> | |||
<Compile Remove="Keras.cs" /> | |||
</ItemGroup> | |||
<ItemGroup> | |||
<PackageReference Include="Colorful.Console" Version="1.2.9" /> | |||
<PackageReference Include="Newtonsoft.Json" Version="12.0.2" /> | |||
@@ -23,7 +27,6 @@ | |||
</ItemGroup> | |||
<ItemGroup> | |||
<ProjectReference Include="..\..\src\KerasNET.Core\Keras.Core.csproj" /> | |||
<ProjectReference Include="..\..\src\TensorFlowDatasets\TensorFlowDatasets.csproj" /> | |||
<ProjectReference Include="..\..\src\TensorFlowNET.Core\TensorFlowNET.Core.csproj" /> | |||
<ProjectReference Include="..\..\src\TensorFlowText\TensorFlowText.csproj" /> | |||
@@ -10,6 +10,10 @@ | |||
<DefineConstants>DEBUG;TRACE</DefineConstants> | |||
</PropertyGroup> | |||
<ItemGroup> | |||
<Compile Remove="Keras.cs" /> | |||
</ItemGroup> | |||
<ItemGroup> | |||
<PackageReference Include="Colorful.Console" Version="1.2.9" /> | |||
<PackageReference Include="Newtonsoft.Json" Version="12.0.2" /> | |||
@@ -19,7 +23,6 @@ | |||
</ItemGroup> | |||
<ItemGroup> | |||
<ProjectReference Include="..\..\src\KerasNET.Core\Keras.Core.csproj" /> | |||
<ProjectReference Include="..\..\src\TensorFlowDatasets\TensorFlowDatasets.csproj" /> | |||
<ProjectReference Include="..\..\src\TensorFlowNET.Core\TensorFlowNET.Core.csproj" /> | |||
<ProjectReference Include="..\..\src\TensorFlowText\TensorFlowText.csproj" /> | |||
@@ -23,6 +23,10 @@ | |||
<AllowUnsafeBlocks>true</AllowUnsafeBlocks> | |||
</PropertyGroup> | |||
<ItemGroup> | |||
<Compile Remove="KerasTests.cs" /> | |||
</ItemGroup> | |||
<ItemGroup> | |||
<PackageReference Include="FluentAssertions" Version="5.9.0" /> | |||
<PackageReference Include="Microsoft.NET.Test.Sdk" Version="16.2.0" /> | |||
@@ -32,7 +36,6 @@ | |||
</ItemGroup> | |||
<ItemGroup> | |||
<ProjectReference Include="..\..\src\KerasNET.Core\Keras.Core.csproj" /> | |||
<ProjectReference Include="..\..\src\TensorFlowHub\TensorFlowHub.csproj" /> | |||
<ProjectReference Include="..\..\src\TensorFlowNET.Core\TensorFlowNET.Core.csproj" /> | |||
<ProjectReference Include="..\..\src\TensorFlowText\TensorFlowText.csproj" /> | |||