@@ -114,22 +114,36 @@ namespace Tensorflow | |||||
for (int i = 0; i < fetch_list.Length; i++) | for (int i = 0; i < fetch_list.Length; i++) | ||||
{ | { | ||||
var tensor = new Tensor(output_values[i]); | var tensor = new Tensor(output_values[i]); | ||||
Type type = tensor.dtype.as_numpy_datatype(); | |||||
var ndims = tensor.shape.Select(x => (int)x).ToArray(); | |||||
switch (tensor.dtype) | switch (tensor.dtype) | ||||
{ | { | ||||
case TF_DataType.TF_STRING: | case TF_DataType.TF_STRING: | ||||
// wired, don't know why we have to start from offset 9. | |||||
var bytes = tensor.Data(); | |||||
result[i] = UTF8Encoding.Default.GetString(bytes, 9, bytes.Length - 9); | |||||
{ | |||||
// wired, don't know why we have to start from offset 9. | |||||
var bytes = tensor.Data(); | |||||
var output = UTF8Encoding.Default.GetString(bytes, 9, bytes.Length - 9); | |||||
result[i] = tensor.NDims == 0 ? output : np.array(output).reshape(ndims); | |||||
} | |||||
break; | break; | ||||
case TF_DataType.TF_FLOAT: | case TF_DataType.TF_FLOAT: | ||||
result[i] = *(float*)c_api.TF_TensorData(output_values[i]); | |||||
{ | |||||
var output = *(float*)c_api.TF_TensorData(output_values[i]); | |||||
result[i] = tensor.NDims == 0 ? output : np.array(output).reshape(ndims); | |||||
} | |||||
break; | break; | ||||
case TF_DataType.TF_INT16: | case TF_DataType.TF_INT16: | ||||
result[i] = *(short*)c_api.TF_TensorData(output_values[i]); | |||||
{ | |||||
var output = *(short*)c_api.TF_TensorData(output_values[i]); | |||||
result[i] = tensor.NDims == 0 ? output : np.array(output).reshape(ndims); | |||||
} | |||||
break; | break; | ||||
case TF_DataType.TF_INT32: | case TF_DataType.TF_INT32: | ||||
result[i] = *(int*)c_api.TF_TensorData(output_values[i]); | |||||
{ | |||||
var output = *(int*)c_api.TF_TensorData(output_values[i]); | |||||
result[i] = tensor.NDims == 0 ? output : np.array(output).reshape(ndims); | |||||
} | |||||
break; | break; | ||||
default: | default: | ||||
throw new NotImplementedException("can't get output"); | throw new NotImplementedException("can't get output"); | ||||
@@ -22,6 +22,8 @@ namespace Tensorflow | |||||
public object value; | public object value; | ||||
public int value_index { get; } | public int value_index { get; } | ||||
private Status status = new Status(); | |||||
private TF_DataType _dtype = TF_DataType.DtInvalid; | private TF_DataType _dtype = TF_DataType.DtInvalid; | ||||
public TF_DataType dtype => _handle == IntPtr.Zero ? _dtype : c_api.TF_TensorType(_handle); | public TF_DataType dtype => _handle == IntPtr.Zero ? _dtype : c_api.TF_TensorType(_handle); | ||||
public ulong bytesize => _handle == IntPtr.Zero ? 0 : c_api.TF_TensorByteSize(_handle); | public ulong bytesize => _handle == IntPtr.Zero ? 0 : c_api.TF_TensorByteSize(_handle); | ||||
@@ -33,8 +35,17 @@ namespace Tensorflow | |||||
get | get | ||||
{ | { | ||||
var dims = new long[rank]; | var dims = new long[rank]; | ||||
for (int i = 0; i < rank; i++) | |||||
dims[i] = c_api.TF_Dim(_handle, i); | |||||
if (_handle == IntPtr.Zero) | |||||
{ | |||||
c_api.TF_GraphGetTensorShape(op.Graph, _as_tf_output(), dims, rank, status); | |||||
status.Check(); | |||||
} | |||||
else | |||||
{ | |||||
for (int i = 0; i < rank; i++) | |||||
dims[i] = c_api.TF_Dim(_handle, i); | |||||
} | |||||
return dims; | return dims; | ||||
} | } | ||||
@@ -48,7 +59,22 @@ namespace Tensorflow | |||||
/// 3 3-Tensor (cube of numbers) | /// 3 3-Tensor (cube of numbers) | ||||
/// n n-Tensor (you get the idea) | /// n n-Tensor (you get the idea) | ||||
/// </summary> | /// </summary> | ||||
public int rank => _handle == IntPtr.Zero ? 0 : c_api.TF_NumDims(_handle); | |||||
public int rank | |||||
{ | |||||
get | |||||
{ | |||||
if (_handle == IntPtr.Zero) | |||||
{ | |||||
var output = _as_tf_output(); | |||||
return c_api.TF_GraphGetTensorNumDims(op.Graph, output, status); | |||||
} | |||||
else | |||||
{ | |||||
return c_api.TF_NumDims(_handle); | |||||
} | |||||
} | |||||
} | |||||
public int NDims => rank; | public int NDims => rank; | ||||
/// <summary> | /// <summary> | ||||
@@ -182,6 +208,7 @@ namespace Tensorflow | |||||
public void Dispose() | public void Dispose() | ||||
{ | { | ||||
c_api.TF_DeleteTensor(_handle); | c_api.TF_DeleteTensor(_handle); | ||||
status.Dispose(); | |||||
} | } | ||||
public static implicit operator IntPtr(Tensor tensor) | public static implicit operator IntPtr(Tensor tensor) | ||||
@@ -6,6 +6,16 @@ namespace Tensorflow | |||||
{ | { | ||||
public static class dtypes | public static class dtypes | ||||
{ | { | ||||
public static Type as_numpy_datatype(this TF_DataType type) | |||||
{ | |||||
switch (type) | |||||
{ | |||||
case TF_DataType.TF_INT32: | |||||
return typeof(int); | |||||
default: | |||||
throw new NotImplementedException("as_numpy_datatype failed"); | |||||
} | |||||
} | |||||
public static TF_DataType as_dtype(Type type) | public static TF_DataType as_dtype(Type type) | ||||
{ | { | ||||
TF_DataType dtype = TF_DataType.DtInvalid; | TF_DataType dtype = TF_DataType.DtInvalid; | ||||
@@ -19,7 +19,7 @@ namespace TensorFlowNET.Examples | |||||
// Basic constant operations | // Basic constant operations | ||||
// The value returned by the constructor represents the output | // The value returned by the constructor represents the output | ||||
// of the Constant op. | // of the Constant op. | ||||
var a = tf.constant(2); | |||||
/*var a = tf.constant(2); | |||||
var b = tf.constant(3); | var b = tf.constant(3); | ||||
// Launch the default graph. | // Launch the default graph. | ||||
@@ -50,7 +50,7 @@ namespace TensorFlowNET.Examples | |||||
// Run every operation with variable input | // Run every operation with variable input | ||||
Console.WriteLine($"Addition with variables: {sess.run(add, feed_dict)}"); | Console.WriteLine($"Addition with variables: {sess.run(add, feed_dict)}"); | ||||
Console.WriteLine($"Multiplication with variables: {sess.run(mul, feed_dict)}"); | Console.WriteLine($"Multiplication with variables: {sess.run(mul, feed_dict)}"); | ||||
} | |||||
}*/ | |||||
// ---------------- | // ---------------- | ||||
// More in details: | // More in details: | ||||
@@ -61,7 +61,39 @@ namespace TensorFlowNET.Examples | |||||
// | // | ||||
// The value returned by the constructor represents the output | // The value returned by the constructor represents the output | ||||
// of the Constant op. | // of the Constant op. | ||||
var nd1 = np.array(3, 3).reshape(1, 2); | |||||
var matrix1 = tf.constant(nd1); | |||||
// Create another Constant that produces a 2x1 matrix. | |||||
var nd2 = np.array(2, 2).reshape(2, 1); | |||||
var matrix2 = tf.constant(nd2); | |||||
// Create a Matmul op that takes 'matrix1' and 'matrix2' as inputs. | |||||
// The returned value, 'product', represents the result of the matrix | |||||
// multiplication. | |||||
var product = tf.matmul(matrix1, matrix2); | |||||
// To run the matmul op we call the session 'run()' method, passing 'product' | |||||
// which represents the output of the matmul op. This indicates to the call | |||||
// that we want to get the output of the matmul op back. | |||||
// | |||||
// All inputs needed by the op are run automatically by the session. They | |||||
// typically are run in parallel. | |||||
// | |||||
// The call 'run(product)' thus causes the execution of threes ops in the | |||||
// graph: the two constants and matmul. | |||||
// | |||||
// The output of the op is returned in 'result' as a numpy `ndarray` object. | |||||
using (sess = tf.Session()) | |||||
{ | |||||
var result = sess.run(product); | |||||
Console.WriteLine(result); | |||||
if((result as NDArray).Data<int>()[0] != 12) | |||||
{ | |||||
throw new Exception("BasicOperations error"); | |||||
} | |||||
// ==> [[ 12.]] | |||||
} | |||||
} | } | ||||
} | } | ||||
} | } |