@@ -0,0 +1,13 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow | |||
{ | |||
public static partial class tf | |||
{ | |||
public static Tensor exp(Tensor x, | |||
string name = null) => gen_math_ops.exp(x, name); | |||
} | |||
} |
@@ -0,0 +1,15 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow | |||
{ | |||
public static partial class tf | |||
{ | |||
public static Tensor reduce_logsumexp(Tensor input_tensor, | |||
int[] axis = null, | |||
bool keepdims = false, | |||
string name = null) => math_ops.reduce_logsumexp(input_tensor, axis, keepdims, name); | |||
} | |||
} |
@@ -0,0 +1,14 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow | |||
{ | |||
public static partial class tf | |||
{ | |||
public static Tensor reshape(Tensor tensor, | |||
Tensor shape, | |||
string name = null) => gen_array_ops.reshape(tensor, shape, name); | |||
} | |||
} |
@@ -0,0 +1,14 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow | |||
{ | |||
public static partial class tf | |||
{ | |||
public static Tensor tile(Tensor input, | |||
Tensor multiples, | |||
string name = null) => gen_array_ops.tile(input, multiples, name); | |||
} | |||
} |
@@ -35,7 +35,7 @@ namespace Tensorflow | |||
/// <param name="name"> Python `str` prepended to names of ops created by this function.</param> | |||
/// <returns>log_prob: a `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`.</returns> | |||
/* | |||
public Tensor log_prob(Tensor value, string name = "log_prob") | |||
{ | |||
return _call_log_prob(value, name); | |||
@@ -45,18 +45,39 @@ namespace Tensorflow | |||
{ | |||
with(ops.name_scope(name, "moments", new { value }), scope => | |||
{ | |||
value = _convert_to_tensor(value, "value", _dtype); | |||
try | |||
{ | |||
return _log_prob(value); | |||
} | |||
catch (Exception e1) | |||
{ | |||
try | |||
{ | |||
return math_ops.log(_prob(value)); | |||
} catch (Exception e2) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
}); | |||
return null; | |||
} | |||
private Tensor _log_prob(Tensor value) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
private Tensor _convert_to_tensor(Tensor value, string name = null, TF_DataType preferred_dtype) | |||
private Tensor _prob(Tensor value) | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
*/ | |||
public TF_DataType dtype() | |||
{ | |||
return this._dtype; | |||
} | |||
/// <summary> | |||
/// Constructs the `Distribution' | |||
@@ -1,3 +1,4 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using Tensorflow; | |||
@@ -80,7 +81,7 @@ namespace Tensorflow | |||
private Tensor _log_prob(Tensor x) | |||
{ | |||
return _log_unnormalized_prob(_z(x)); | |||
return _log_unnormalized_prob(_z(x)) -_log_normalization(); | |||
} | |||
private Tensor _log_unnormalized_prob (Tensor x) | |||
@@ -92,5 +93,11 @@ namespace Tensorflow | |||
{ | |||
return (x - this._loc) / this._scale; | |||
} | |||
private Tensor _log_normalization() | |||
{ | |||
Tensor t = new Tensor(Math.Log(2.0 * Math.PI)); | |||
return 0.5 * t + math_ops.log(scale()); | |||
} | |||
} | |||
} |
@@ -66,6 +66,11 @@ namespace Tensorflow | |||
public static Tensor ones_like<T>(T tensor, TF_DataType dtype = TF_DataType.DtInvalid, string name = null, bool optimize = true) | |||
=> ones_like_impl(tensor, dtype, name, optimize); | |||
public static Tensor reshape(Tensor tensor, Tensor shape, string name = null) | |||
{ | |||
return gen_array_ops.reshape(tensor, shape, null); | |||
} | |||
private static Tensor ones_like_impl<T>(T tensor, TF_DataType dtype, string name, bool optimize = true) | |||
{ | |||
return with(ops.name_scope(name, "ones_like", new { tensor }), scope => | |||
@@ -48,6 +48,58 @@ namespace Tensorflow | |||
return _op.outputs[0]; | |||
} | |||
/// <summary> | |||
/// Computes square of x element-wise. | |||
/// </summary> | |||
/// <param name="x"> A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.</param> | |||
/// <param name="name"> A name for the operation (optional).</param> | |||
/// <returns> A `Tensor`. Has the same type as `x`.</returns> | |||
public static Tensor square(Tensor x, string name = null) | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("Square", name, args: new { x }); | |||
return _op.outputs[0]; | |||
} | |||
/// <summary> | |||
/// Returns which elements of x are finite. | |||
/// </summary> | |||
/// <param name="x"> A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`.</param> | |||
/// <param name="name"> A name for the operation (optional).</param> | |||
/// <returns> A `Tensor` of type `bool`.</returns> | |||
public static Tensor is_finite(Tensor x, string name = null) | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("IsFinite", name, args: new { x }); | |||
return _op.outputs[0]; | |||
} | |||
/// <summary> | |||
/// Computes exponential of x element-wise. \\(y = e^x\\). | |||
/// </summary> | |||
/// <param name="x"> A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`.</param> | |||
/// <param name="name"> A name for the operation (optional).</param> | |||
/// <returns> A `Tensor`. Has the same type as `x`.</returns> | |||
public static Tensor exp(Tensor x, string name = null) | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("Exp", name, args: new { x }); | |||
return _op.outputs[0]; | |||
} | |||
/// <summary> | |||
/// Computes natural logarithm of x element-wise. | |||
/// </summary> | |||
/// <param name="x"> A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`.</param> | |||
/// <param name="name"> name: A name for the operation (optional).</param> | |||
/// <returns> A `Tensor`. Has the same type as `x`.</returns> | |||
public static Tensor log(Tensor x, string name = null) | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("Log", name, args: new { x }); | |||
return _op.outputs[0]; | |||
} | |||
public static Tensor cast(Tensor x, TF_DataType DstT, bool Truncate= false, string name= "") | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("Cast", name, args: new { x, DstT, Truncate }); | |||
@@ -134,6 +186,13 @@ namespace Tensorflow | |||
return _op.outputs[0]; | |||
} | |||
public static Tensor _max(Tensor input, int[] axis, bool keep_dims=false, string name = null) | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("Max", name, new { input, reduction_indices = axis, keep_dims }); | |||
return _op.outputs[0]; | |||
} | |||
public static Tensor pow<Tx, Ty>(Tx x, Ty y, string name = null) | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("Pow", name, args: new { x, y }); | |||
@@ -57,7 +57,12 @@ namespace Tensorflow | |||
public static Tensor square(Tensor x, string name = null) | |||
{ | |||
throw new NotImplementedException(); | |||
return gen_math_ops.square(x, name); | |||
} | |||
public static Tensor log(Tensor x, string name = null) | |||
{ | |||
return gen_math_ops.log(x, name); | |||
} | |||
/// <summary> | |||
@@ -82,6 +87,51 @@ namespace Tensorflow | |||
return gen_data_flow_ops.dynamic_stitch(a1, a2); | |||
} | |||
/// <summary> | |||
/// Computes log(sum(exp(elements across dimensions of a tensor))). | |||
/// Reduces `input_tensor` along the dimensions given in `axis`. | |||
/// Unless `keepdims` is true, the rank of the tensor is reduced by 1 for each | |||
/// entry in `axis`. If `keepdims` is true, the reduced dimensions | |||
/// are retained with length 1. | |||
/// If `axis` has no entries, all dimensions are reduced, and a | |||
/// tensor with a single element is returned. | |||
/// This function is more numerically stable than log(sum(exp(input))). It avoids | |||
/// overflows caused by taking the exp of large inputs and underflows caused by | |||
/// taking the log of small inputs. | |||
/// </summary> | |||
/// <param name="input_tensor"> The tensor to reduce. Should have numeric type.</param> | |||
/// <param name="axis"> The dimensions to reduce. If `None` (the default), reduces all | |||
/// dimensions.Must be in the range `[-rank(input_tensor), rank(input_tensor))`.</param> | |||
/// <param name="keepdims"></param> | |||
/// <returns> The reduced tensor.</returns> | |||
public static Tensor reduce_logsumexp(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null) | |||
{ | |||
with(ops.name_scope(name, "ReduceLogSumExp", new { input_tensor }), scope => | |||
{ | |||
var raw_max = reduce_max(input_tensor, axis, true); | |||
var my_max = array_ops.stop_gradient(array_ops.where(gen_math_ops.is_finite(raw_max), raw_max, array_ops.zeros_like(raw_max))); | |||
var result = gen_math_ops.log( | |||
reduce_sum( | |||
gen_math_ops.exp(gen_math_ops.sub(input_tensor, my_max)), | |||
new Tensor(axis), | |||
keepdims)); | |||
if (!keepdims) | |||
{ | |||
my_max = array_ops.reshape(my_max, array_ops.shape(result)); | |||
} | |||
result = gen_math_ops.add(result, my_max); | |||
return _may_reduce_to_scalar(keepdims, axis, result); | |||
}); | |||
return null; | |||
} | |||
public static Tensor reduce_max(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null) | |||
{ | |||
return _may_reduce_to_scalar(keepdims, axis, gen_math_ops._max(input_tensor, (int[])_ReductionDims(input_tensor, axis), keepdims, name)); | |||
} | |||
/// <summary> | |||
/// Casts a tensor to type `int32`. | |||
/// </summary> | |||
@@ -12,6 +12,7 @@ namespace TensorFlowNET.Examples | |||
/// </summary> | |||
public class NaiveBayesClassifier : Python, IExample | |||
{ | |||
public Normal dist { get; set; } | |||
public void Run() | |||
{ | |||
np.array<float>(1.0f, 1.0f); | |||
@@ -72,16 +73,34 @@ namespace TensorFlowNET.Examples | |||
// Create a 3x2 univariate normal distribution with the | |||
// Known mean and variance | |||
var dist = tf.distributions.Normal(mean, tf.sqrt(variance)); | |||
this.dist = dist; | |||
} | |||
public void predict (NDArray X) | |||
public Tensor predict (NDArray X) | |||
{ | |||
// assert self.dist is not None | |||
// nb_classes, nb_features = map(int, self.dist.scale.shape) | |||
if (dist == null) | |||
{ | |||
throw new ArgumentNullException("cant not find the model (normal distribution)!"); | |||
} | |||
int nb_classes = (int) dist.scale().shape[0]; | |||
int nb_features = (int)dist.scale().shape[1]; | |||
// Conditional probabilities log P(x|c) with shape | |||
// (nb_samples, nb_classes) | |||
Tensor tile = tf.tile(new Tensor(X), new Tensor(new int[] { -1, nb_classes, nb_features })); | |||
Tensor r = tf.reshape(tile, new Tensor(new int[] { -1, nb_classes, nb_features })); | |||
var cond_probs = tf.reduce_sum(dist.log_prob(r)); | |||
// uniform priors | |||
var priors = np.log(np.array<double>((1.0 / nb_classes) * nb_classes)); | |||
// posterior log probability, log P(c) + log P(x|c) | |||
var joint_likelihood = tf.add(new Tensor(priors), cond_probs); | |||
// normalize to get (log)-probabilities | |||
throw new NotFiniteNumberException(); | |||
var norm_factor = tf.reduce_logsumexp(joint_likelihood, new int[] { 1 }, true); | |||
var log_prob = joint_likelihood - norm_factor; | |||
// exp to get the actual probabilities | |||
return tf.exp(log_prob); | |||
} | |||
} | |||
} |