fix: add the implementation of the tile's and GatherND's grad and add OptionalArgstags/v0.150.0-BERT-Model
@@ -140,6 +140,16 @@ namespace Tensorflow | |||||
public Tensor gather(Tensor @params, Tensor indices, string name = null, int axis = 0) | public Tensor gather(Tensor @params, Tensor indices, string name = null, int axis = 0) | ||||
=> array_ops.gather(@params, indices, name: name, axis: ops.convert_to_tensor(axis)); | => array_ops.gather(@params, indices, name: name, axis: ops.convert_to_tensor(axis)); | ||||
/// <summary> | |||||
/// Gather slices from `params` into a Tensor with shape specified by `indices`. | |||||
/// </summary> | |||||
/// <param name="params"></param> | |||||
/// <param name="indices"></param> | |||||
/// <param name="name"></param> | |||||
/// <returns></returns> | |||||
public Tensor gather_nd(Tensor @params, Tensor indices, string name = null) | |||||
=> gen_array_ops.gather_nd(@params, indices, name: name); | |||||
/// <summary> | /// <summary> | ||||
/// Return the elements, either from `x` or `y`, depending on the `condition`. | /// Return the elements, either from `x` or `y`, depending on the `condition`. | ||||
/// </summary> | /// </summary> | ||||
@@ -381,5 +381,48 @@ namespace Tensorflow.Gradients | |||||
var axis = op.inputs[1]; | var axis = op.inputs[1]; | ||||
return new Tensor[] { array_ops.reverse(grad, axis), null }; | return new Tensor[] { array_ops.reverse(grad, axis), null }; | ||||
} | } | ||||
[RegisterGradient("Tile")] | |||||
public static Tensor[] _TileGrad(Operation op, Tensor[] grads) | |||||
{ | |||||
var grad = grads[0]; | |||||
var input_shape = array_ops.shape(op.inputs[0], out_type: op.inputs[1].dtype); | |||||
var split_shape = array_ops.reshape(array_ops.transpose(array_ops.stack(new Tensor[] { op.inputs[1], input_shape })), new Shape(-1)); | |||||
var axes = math_ops.range(0, array_ops.size(split_shape), 2); | |||||
//# Sum reduces grad along the first dimension for IndexedSlices | |||||
//if isinstance(grad, indexed_slices_lib.IndexedSlices): | |||||
//input_shape_0 = math_ops.cast(input_shape[0], grad.indices.dtype) | |||||
//grad = math_ops.unsorted_segment_sum( | |||||
// grad.values, math_ops.mod(grad.indices, input_shape_0), input_shape_0) | |||||
//split_shape = array_ops.concat([[1], split_shape[1:]], axis = 0) | |||||
var input_grad = math_ops.reduce_sum(array_ops.reshape(grad, split_shape), axes); | |||||
if (!tf.Context.executing_eagerly()) | |||||
{ | |||||
input_grad.set_shape(op.inputs[0].GetShape()); | |||||
} | |||||
return new Tensor[] { input_grad, null }; | |||||
} | |||||
[RegisterGradient("GatherNd")] | |||||
public static Tensor[] _GatherNdGrad(Operation op, Tensor[] grads) | |||||
{ | |||||
var @ref = op.inputs[0]; | |||||
var indices = op.inputs[1]; | |||||
var grad = grads[0]; | |||||
var ref_shape = array_ops.shape(@ref, out_type: indices.dtype); | |||||
Tensor ref_grad = null; | |||||
if (indices.shape.ndim == 2 && indices.shape.dims[indices.shape.Length - 1] == 1) | |||||
{ | |||||
ref_grad = (Tensor)new IndexedSlices(grad, array_ops.squeeze(indices, axis: -1), ref_shape); | |||||
} | |||||
else | |||||
{ | |||||
ref_grad = gen_array_ops.scatter_nd(indices, grad, ref_shape); | |||||
} | |||||
return new Tensor[] { ref_grad, null }; | |||||
} | |||||
} | } | ||||
} | } |
@@ -4,10 +4,8 @@ using System.Text; | |||||
namespace Tensorflow.Keras.ArgsDefinition | namespace Tensorflow.Keras.ArgsDefinition | ||||
{ | { | ||||
public class GRUOptionalArgs | |||||
public class GRUOptionalArgs : RnnOptionalArgs | |||||
{ | { | ||||
public string Identifier => "GRU"; | public string Identifier => "GRU"; | ||||
public Tensor Mask { get; set; } = null; | |||||
} | } | ||||
} | } |
@@ -0,0 +1,11 @@ | |||||
using System; | |||||
using System.Collections.Generic; | |||||
using System.Text; | |||||
namespace Tensorflow.Keras.ArgsDefinition.Rnn | |||||
{ | |||||
public class LSTMOptionalArgs : RnnOptionalArgs | |||||
{ | |||||
public string Identifier => "LSTM"; | |||||
} | |||||
} |
@@ -0,0 +1,11 @@ | |||||
using System; | |||||
using System.Collections.Generic; | |||||
using System.Text; | |||||
namespace Tensorflow.Keras.ArgsDefinition.Rnn | |||||
{ | |||||
public class SimpleRNNOptionalArgs : RnnOptionalArgs | |||||
{ | |||||
public string Identifier => "SimpleRNN"; | |||||
} | |||||
} |
@@ -829,7 +829,7 @@ namespace Tensorflow | |||||
/// <returns>A `Tensor`. Has the same type as `input`. | /// <returns>A `Tensor`. Has the same type as `input`. | ||||
/// Contains the same data as `input`, but has one or more dimensions of | /// Contains the same data as `input`, but has one or more dimensions of | ||||
/// size 1 removed.</returns> | /// size 1 removed.</returns> | ||||
public static Tensor squeeze(Tensor input, int[] axis = null, string name = null) | |||||
public static Tensor squeeze(Tensor input, Axis axis = null, string name = null) | |||||
=> gen_array_ops.squeeze(input, axis, name); | => gen_array_ops.squeeze(input, axis, name); | ||||
public static Tensor identity(Tensor input, string name = null) | public static Tensor identity(Tensor input, string name = null) | ||||
@@ -990,7 +990,7 @@ namespace Tensorflow | |||||
return @params.sparse_read(indices, name); | return @params.sparse_read(indices, name); | ||||
} | } | ||||
public static Tensor transpose<T1>(T1 a, Axis perm, string name = "transpose", bool conjugate = false) | |||||
public static Tensor transpose<T1>(T1 a, Axis perm = null, string name = "transpose", bool conjugate = false) | |||||
{ | { | ||||
return tf_with(ops.name_scope(name, "transpose", new { a }), scope => | return tf_with(ops.name_scope(name, "transpose", new { a }), scope => | ||||
{ | { | ||||
@@ -62,7 +62,7 @@ namespace TensorFlowNET.UnitTest.Gradient | |||||
// Calcute the gradient of (x1-x2)^2 | // Calcute the gradient of (x1-x2)^2 | ||||
// by Automatic Differentiation in Eager mode | // by Automatic Differentiation in Eager mode | ||||
// Expected is 2*(abs(x1-x2)) | // Expected is 2*(abs(x1-x2)) | ||||
Tensor x1 = new NDArray( new float[] { 1, 3, 5, 21, 19, 17 }); | |||||
Tensor x1 = new NDArray(new float[] { 1, 3, 5, 21, 19, 17 }); | |||||
Tensor x2 = new NDArray(new float[] { 29, 27, 23, 7, 11, 13 }); | Tensor x2 = new NDArray(new float[] { 29, 27, 23, 7, 11, 13 }); | ||||
float[] expected = new float[] | float[] expected = new float[] | ||||
{ | { | ||||
@@ -173,5 +173,34 @@ namespace TensorFlowNET.UnitTest.Gradient | |||||
var result = grad(x, 4); | var result = grad(x, 4); | ||||
Assert.AreEqual((float)result, 4.0f); | Assert.AreEqual((float)result, 4.0f); | ||||
} | } | ||||
[TestMethod] | |||||
public void Tile() | |||||
{ | |||||
var a = tf.constant(new int[] { 1 }, TF_DataType.TF_FLOAT); | |||||
var b = tf.constant(new int[] { 2 }); | |||||
using (var tape = tf.GradientTape()) | |||||
{ | |||||
tape.watch(a); | |||||
var y = tf.tile(a, b); | |||||
var grad = tape.gradient(y, a); | |||||
Assert.AreEqual((float)grad.numpy(), 2.0f); | |||||
} | |||||
} | |||||
[TestMethod] | |||||
public void GatherNdTest() | |||||
{ | |||||
var x = tf.constant(new float[,] { { 1.0f, 2.0f, 3.0f }, { 1.0f, 2.0f, 3.0f }, { 1.0f, 2.0f, 3.0f } }, dtype: TF_DataType.TF_FLOAT); | |||||
var indices = tf.constant(new int[,] { { 0, 1 }, { 1, 1 }, { 2, 1 } }, dtype: TF_DataType.TF_INT32); | |||||
using (var tape = tf.GradientTape()) | |||||
{ | |||||
tape.watch(x); | |||||
var res = tf.gather_nd(x, indices); | |||||
var grad = tape.gradient(res, x); | |||||
var expected = np.array(new float[,] { { 0f, 1f, 0f }, { 0f, 1f, 0f }, { 0f, 1f, 0f } }); | |||||
Assert.IsTrue(Enumerable.SequenceEqual(grad.ToArray<float>(), expected.ToArray<float>())); | |||||
} | |||||
} | |||||
} | } | ||||
} | } |