@@ -142,13 +142,13 @@ Example runner will download all the required files like training data and model | |||
* [Logistic Regression](test/TensorFlowNET.Examples/BasicModels/LogisticRegression.cs) | |||
* [Nearest Neighbor](test/TensorFlowNET.Examples/BasicModels/NearestNeighbor.cs) | |||
* [Naive Bayes Classification](test/TensorFlowNET.Examples/BasicModels/NaiveBayesClassifier.cs) | |||
* [Full Connected Neural Network](test/TensorFlowNET.Examples/ImageProcess/DigitRecognitionNN.cs) | |||
* [Image Recognition](test/TensorFlowNET.Examples/ImageProcess) | |||
* [K-means Clustering](test/TensorFlowNET.Examples/BasicModels/KMeansClustering.cs) | |||
* [NN XOR](test/TensorFlowNET.Examples/BasicModels/NeuralNetXor.cs) | |||
* [Object Detection](test/TensorFlowNET.Examples/ImageProcess/ObjectDetection.cs) | |||
* [Text Classification](test/TensorFlowNET.Examples/TextProcess/BinaryTextClassification.cs) | |||
* [CNN Text Classification](test/TensorFlowNET.Examples/TextProcess/cnn_models/VdCnn.cs) | |||
* [Named Entity Recognition](test/TensorFlowNET.Examples/TextProcess/NER) | |||
* [Transfer Learning for Image Classification in InceptionV3](test/TensorFlowNET.Examples/ImageProcess/RetrainImageClassifier.cs) | |||
@@ -40,7 +40,7 @@ namespace Keras.Layers | |||
var dot = tf.matmul(x, W); | |||
if (this.activation != null) | |||
dot = activation.Activate(dot); | |||
Console.WriteLine("Calling Layer \"" + name + "(" + np.array(dot.GetShape().Dimensions).ToString() + ")\" ..."); | |||
Console.WriteLine("Calling Layer \"" + name + "(" + np.array(dot.TensorShape.Dimensions).ToString() + ")\" ..."); | |||
return dot; | |||
} | |||
public TensorShape __shape__() | |||
@@ -65,7 +65,7 @@ namespace Keras | |||
#endregion | |||
#region Model Graph Form Layer Stack | |||
var flow_shape = features.GetShape(); | |||
var flow_shape = features.TensorShape; | |||
Flow = features; | |||
for (int i = 0; i < layer_stack.Count; i++) | |||
{ | |||
@@ -37,7 +37,7 @@ namespace Tensorflow.Framework | |||
public static bool has_fully_defined_shape(Tensor tensor) | |||
{ | |||
return tensor.GetShape().is_fully_defined(); | |||
return tensor.TensorShape.is_fully_defined(); | |||
} | |||
} | |||
} |
@@ -161,7 +161,7 @@ namespace Tensorflow.Keras.Layers | |||
if (_dtype == TF_DataType.DtInvalid) | |||
_dtype = input.dtype; | |||
var input_shapes = input.GetShape(); | |||
var input_shapes = input.TensorShape; | |||
build(input_shapes); | |||
built = true; | |||
} | |||
@@ -118,8 +118,8 @@ namespace Tensorflow | |||
if(weights > 0) | |||
{ | |||
var weights_tensor = ops.convert_to_tensor(weights); | |||
var labels_rank = labels.GetShape().NDim; | |||
var weights_shape = weights_tensor.GetShape(); | |||
var labels_rank = labels.TensorShape.NDim; | |||
var weights_shape = weights_tensor.TensorShape; | |||
var weights_rank = weights_shape.NDim; | |||
if (labels_rank > -1 && weights_rank > -1) | |||
@@ -18,7 +18,7 @@ namespace Tensorflow.Operations | |||
string data_format = null) | |||
{ | |||
var dilation_rate_tensor = ops.convert_to_tensor(dilation_rate, TF_DataType.TF_INT32, name: "dilation_rate"); | |||
var rate_shape = dilation_rate_tensor.GetShape(); | |||
var rate_shape = dilation_rate_tensor.TensorShape; | |||
var num_spatial_dims = rate_shape.Dimensions[0]; | |||
int starting_spatial_dim = -1; | |||
if (!string.IsNullOrEmpty(data_format) && data_format.StartsWith("NC")) | |||
@@ -24,9 +24,9 @@ namespace Tensorflow | |||
{ | |||
predictions = ops.convert_to_tensor(predictions); | |||
labels = ops.convert_to_tensor(labels); | |||
var predictions_shape = predictions.GetShape(); | |||
var predictions_shape = predictions.TensorShape; | |||
var predictions_rank = predictions_shape.NDim; | |||
var labels_shape = labels.GetShape(); | |||
var labels_shape = labels.TensorShape; | |||
var labels_rank = labels_shape.NDim; | |||
if(labels_rank > -1 && predictions_rank > -1) | |||
{ | |||
@@ -83,7 +83,7 @@ namespace Tensorflow | |||
// float to be selected, hence we use a >= comparison. | |||
var keep_mask = random_tensor >= rate; | |||
var ret = x * scale * math_ops.cast(keep_mask, x.dtype); | |||
ret.SetShape(x.GetShape()); | |||
ret.SetShape(x.TensorShape); | |||
return ret; | |||
}); | |||
} | |||
@@ -131,14 +131,14 @@ namespace Tensorflow | |||
var precise_logits = logits.dtype == TF_DataType.TF_HALF ? math_ops.cast(logits, dtypes.float32) : logits; | |||
// Store label shape for result later. | |||
var labels_static_shape = labels.GetShape(); | |||
var labels_static_shape = labels.TensorShape; | |||
var labels_shape = array_ops.shape(labels); | |||
/*bool static_shapes_fully_defined = ( | |||
labels_static_shape.is_fully_defined() && | |||
logits.get_shape()[:-1].is_fully_defined());*/ | |||
// Check if no reshapes are required. | |||
if(logits.GetShape().NDim == 2) | |||
if(logits.TensorShape.NDim == 2) | |||
{ | |||
var (cost, _) = gen_nn_ops.sparse_softmax_cross_entropy_with_logits( | |||
precise_logits, labels, name: name); | |||
@@ -163,7 +163,7 @@ namespace Tensorflow | |||
{ | |||
var precise_logits = logits; | |||
var input_rank = array_ops.rank(precise_logits); | |||
var shape = logits.GetShape(); | |||
var shape = logits.TensorShape; | |||
if (axis != -1) | |||
throw new NotImplementedException("softmax_cross_entropy_with_logits_v2_helper axis != -1"); | |||
@@ -16,8 +16,8 @@ namespace Tensorflow | |||
weights, dtype: values.dtype.as_base_dtype(), name: "weights"); | |||
// Try static check for exact match. | |||
var weights_shape = weights.GetShape(); | |||
var values_shape = values.GetShape(); | |||
var weights_shape = weights.TensorShape; | |||
var values_shape = values.TensorShape; | |||
if (weights_shape.is_fully_defined() && | |||
values_shape.is_fully_defined()) | |||
return weights; | |||
@@ -1,4 +1,5 @@ | |||
using System; | |||
using NumSharp; | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
@@ -110,10 +110,7 @@ namespace Tensorflow | |||
return shape.Select(x => (int)x).ToArray(); | |||
} | |||
public TensorShape GetShape() | |||
{ | |||
return tensor_util.to_shape(shape); | |||
} | |||
public TensorShape TensorShape => tensor_util.to_shape(shape); | |||
public void SetShape(Shape shape) | |||
{ | |||
@@ -37,5 +37,7 @@ namespace Tensorflow | |||
{ | |||
throw new NotImplementedException("TensorShape is_compatible_with"); | |||
} | |||
public static implicit operator TensorShape((int, int) dims) => new TensorShape(dims.Item1, dims.Item2); | |||
} | |||
} |
@@ -20,6 +20,15 @@ namespace Tensorflow | |||
verify_shape: verify_shape, | |||
allow_broadcast: false); | |||
public static Tensor constant(float value, | |||
int shape, | |||
string name = "Const") => constant_op._constant_impl(value, | |||
tf.float32, | |||
new int[] { shape }, | |||
name, | |||
verify_shape: false, | |||
allow_broadcast: false); | |||
public static Tensor zeros(Shape shape, TF_DataType dtype = TF_DataType.TF_FLOAT, string name = null) => array_ops.zeros(shape, dtype, name); | |||
public static Tensor size(Tensor input, | |||
@@ -10,9 +10,11 @@ namespace Tensorflow | |||
{ | |||
public static class train | |||
{ | |||
public static Optimizer GradientDescentOptimizer(float learning_rate) => new GradientDescentOptimizer(learning_rate); | |||
public static Optimizer GradientDescentOptimizer(float learning_rate) | |||
=> new GradientDescentOptimizer(learning_rate); | |||
public static Optimizer AdamOptimizer(float learning_rate) => new AdamOptimizer(learning_rate); | |||
public static Optimizer AdamOptimizer(float learning_rate, string name = null) | |||
=> new AdamOptimizer(learning_rate, name: name); | |||
public static Saver Saver(VariableV1[] var_list = null) => new Saver(var_list: var_list); | |||
@@ -153,7 +153,7 @@ namespace Tensorflow | |||
// Manually overrides the variable's shape with the initial value's. | |||
if (validate_shape) | |||
{ | |||
var initial_value_shape = _initial_value.GetShape(); | |||
var initial_value_shape = _initial_value.TensorShape; | |||
if (!initial_value_shape.is_fully_defined()) | |||
throw new ValueError($"initial_value must have a shape specified: {_initial_value}"); | |||
} | |||
@@ -15,8 +15,8 @@ namespace Keras.Test | |||
{ | |||
var dense_1 = new Dense(1, name: "dense_1", activation: tf.nn.relu()); | |||
var input = new Tensor(np.array(new int[] { 3 })); | |||
dense_1.__build__(input.GetShape()); | |||
var outputShape = dense_1.output_shape(input.GetShape()); | |||
dense_1.__build__(input.TensorShape); | |||
var outputShape = dense_1.output_shape(input.TensorShape); | |||
var a = (int[])(outputShape.Dimensions); | |||
var b = (int[])(new int[] { 1 }); | |||
var _a = np.array(a); | |||
@@ -1,14 +1,17 @@ | |||
using System; | |||
using NumSharp; | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow; | |||
using TensorFlowNET.Examples.Utility; | |||
using static Tensorflow.Python; | |||
namespace TensorFlowNET.Examples.ImageProcess | |||
{ | |||
/// <summary> | |||
/// Neural Network classifier for Hand Written Digits | |||
/// Sample Neural Network architecture with two layers implemented for classifying MNIST digits | |||
/// Sample Neural Network architecture with two layers implemented for classifying MNIST digits. | |||
/// Use Stochastic Gradient Descent (SGD) optimizer. | |||
/// http://www.easy-tensorflow.com/tf-tutorials/neural-networks | |||
/// </summary> | |||
public class DigitRecognitionNN : IExample | |||
@@ -22,24 +25,74 @@ namespace TensorFlowNET.Examples.ImageProcess | |||
const int img_w = 28; | |||
int img_size_flat = img_h * img_w; // 784, the total number of pixels | |||
int n_classes = 10; // Number of classes, one class per digit | |||
int training_epochs = 10; | |||
int? train_size = null; | |||
int validation_size = 5000; | |||
int? test_size = null; | |||
// Hyper-parameters | |||
int epochs = 10; | |||
int batch_size = 100; | |||
float learning_rate = 0.001f; | |||
int h1 = 200; // number of nodes in the 1st hidden layer | |||
Datasets mnist; | |||
Tensor x, y; | |||
Tensor loss, accuracy; | |||
Operation optimizer; | |||
int display_freq = 100; | |||
public bool Run() | |||
{ | |||
PrepareData(); | |||
BuildGraph(); | |||
Train(); | |||
return true; | |||
} | |||
public Graph BuildGraph() | |||
{ | |||
throw new NotImplementedException(); | |||
var g = tf.Graph(); | |||
// Placeholders for inputs (x) and outputs(y) | |||
x = tf.placeholder(tf.float32, shape: (-1, img_size_flat), name: "X"); | |||
y = tf.placeholder(tf.float32, shape: (-1, n_classes), name: "Y"); | |||
// Create a fully-connected layer with h1 nodes as hidden layer | |||
var fc1 = fc_layer(x, h1, "FC1", use_relu: true); | |||
// Create a fully-connected layer with n_classes nodes as output layer | |||
var output_logits = fc_layer(fc1, n_classes, "OUT", use_relu: false); | |||
// Define the loss function, optimizer, and accuracy | |||
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels: y, logits: output_logits), name: "loss"); | |||
optimizer = tf.train.AdamOptimizer(learning_rate: learning_rate, name: "Adam-op").minimize(loss); | |||
var correct_prediction = tf.equal(tf.argmax(output_logits, 1), tf.argmax(y, 1), name: "correct_pred"); | |||
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name: "accuracy"); | |||
// Network predictions | |||
var cls_prediction = tf.argmax(output_logits, axis: 1, name: "predictions"); | |||
return g; | |||
} | |||
private Tensor fc_layer(Tensor x, int num_units, string name, bool use_relu = true) | |||
{ | |||
var in_dim = x.shape[1]; | |||
var initer = tf.truncated_normal_initializer(stddev: 0.01f); | |||
var W = tf.get_variable("W_" + name, | |||
dtype: tf.float32, | |||
shape: (in_dim, num_units), | |||
initializer: initer); | |||
var initial = tf.constant(0f, num_units); | |||
var b = tf.get_variable("b_" + name, | |||
dtype: tf.float32, | |||
initializer: initial); | |||
var layer = tf.matmul(x, W) + b; | |||
if (use_relu) | |||
layer = tf.nn.relu(layer); | |||
return layer; | |||
} | |||
public Graph ImportGraph() | |||
{ | |||
throw new NotImplementedException(); | |||
@@ -52,12 +105,82 @@ namespace TensorFlowNET.Examples.ImageProcess | |||
public void PrepareData() | |||
{ | |||
mnist = MnistDataSet.read_data_sets("mnist", one_hot: true, train_size: train_size, validation_size: validation_size, test_size: test_size); | |||
mnist = MnistDataSet.read_data_sets("mnist", one_hot: true); | |||
} | |||
public bool Train() | |||
{ | |||
throw new NotImplementedException(); | |||
// Number of training iterations in each epoch | |||
var num_tr_iter = mnist.train.labels.len / batch_size; | |||
return with(tf.Session(), sess => | |||
{ | |||
var init = tf.global_variables_initializer(); | |||
sess.run(init); | |||
float loss_val = 100.0f; | |||
float accuracy_val = 0f; | |||
foreach (var epoch in range(epochs)) | |||
{ | |||
print($"Training epoch: {epoch + 1}"); | |||
// Randomly shuffle the training data at the beginning of each epoch | |||
var (x_train, y_train) = randomize(mnist.train.images, mnist.train.labels); | |||
foreach (var iteration in range(num_tr_iter)) | |||
{ | |||
var start = iteration * batch_size; | |||
var end = (iteration + 1) * batch_size; | |||
var (x_batch, y_batch) = get_next_batch(x_train, y_train, start, end); | |||
// Run optimization op (backprop) | |||
sess.run(optimizer, new FeedItem(x, x_batch), new FeedItem(y, y_batch)); | |||
if (iteration % display_freq == 0) | |||
{ | |||
// Calculate and display the batch loss and accuracy | |||
var result = sess.run(new[] { loss, accuracy }, new FeedItem(x, x_batch), new FeedItem(y, y_batch)); | |||
loss_val = result[0]; | |||
accuracy_val = result[1]; | |||
print($"iter {iteration.ToString("000")}: Loss={loss_val.ToString("0.0000")}, Training Accuracy={accuracy_val.ToString("P")}"); | |||
} | |||
} | |||
// Run validation after every epoch | |||
var results1 = sess.run(new[] { loss, accuracy }, new FeedItem(x, mnist.validation.images), new FeedItem(y, mnist.validation.labels)); | |||
loss_val = results1[0]; | |||
accuracy_val = results1[1]; | |||
print("---------------------------------------------------------"); | |||
print($"Epoch: {epoch + 1}, validation loss: {loss_val.ToString("0.0000")}, validation accuracy: {accuracy_val.ToString("P")}"); | |||
print("---------------------------------------------------------"); | |||
} | |||
return accuracy_val > 0.9; | |||
}); | |||
} | |||
private (NDArray, NDArray) randomize(NDArray x, NDArray y) | |||
{ | |||
var perm = np.random.permutation(y.shape[0]); | |||
np.random.shuffle(perm); | |||
return (mnist.train.images[perm], mnist.train.labels[perm]); | |||
} | |||
/// <summary> | |||
/// selects a few number of images determined by the batch_size variable (if you don't know why, read about Stochastic Gradient Method) | |||
/// </summary> | |||
/// <param name="x"></param> | |||
/// <param name="y"></param> | |||
/// <param name="start"></param> | |||
/// <param name="end"></param> | |||
/// <returns></returns> | |||
private (NDArray, NDArray) get_next_batch(NDArray x, NDArray y, int start, int end) | |||
{ | |||
var x_batch = x[$"{start}:{end}"]; | |||
var y_batch = y[$"{start}:{end}"]; | |||
return (x_batch, y_batch); | |||
} | |||
} | |||
} |
@@ -264,12 +264,12 @@ namespace TensorFlowNET.Examples.ImageProcess | |||
private (Operation, Tensor, Tensor, Tensor, Tensor) add_final_retrain_ops(int class_count, string final_tensor_name, | |||
Tensor bottleneck_tensor, bool quantize_layer, bool is_training) | |||
{ | |||
var (batch_size, bottleneck_tensor_size) = (bottleneck_tensor.GetShape().Dimensions[0], bottleneck_tensor.GetShape().Dimensions[1]); | |||
var (batch_size, bottleneck_tensor_size) = (bottleneck_tensor.TensorShape.Dimensions[0], bottleneck_tensor.TensorShape.Dimensions[1]); | |||
with(tf.name_scope("input"), scope => | |||
{ | |||
bottleneck_input = tf.placeholder_with_default( | |||
bottleneck_tensor, | |||
shape: bottleneck_tensor.GetShape().Dimensions, | |||
shape: bottleneck_tensor.TensorShape.Dimensions, | |||
name: "BottleneckInputPlaceholder"); | |||
ground_truth_input = tf.placeholder(tf.int64, new TensorShape(batch_size), name: "GroundTruthInput"); | |||