You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

linear_regression.py 3.0 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394
  1. '''
  2. A linear regression learning algorithm example using TensorFlow library.
  3. Author: Aymeric Damien
  4. Project: https://github.com/aymericdamien/TensorFlow-Examples/
  5. '''
  6. from __future__ import print_function
  7. import tensorflow as tf
  8. import numpy
  9. import matplotlib.pyplot as plt
  10. rng = numpy.random
  11. # Parameters
  12. learning_rate = 0.01
  13. training_epochs = 1000
  14. display_step = 50
  15. # Training Data
  16. train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,
  17. 7.042,10.791,5.313,7.997,5.654,9.27,3.1])
  18. train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,
  19. 2.827,3.465,1.65,2.904,2.42,2.94,1.3])
  20. n_samples = train_X.shape[0]
  21. # tf Graph Input
  22. X = tf.placeholder("float")
  23. Y = tf.placeholder("float")
  24. # Set model weights
  25. W = tf.Variable(rng.randn(), name="weight")
  26. b = tf.Variable(rng.randn(), name="bias")
  27. # Construct a linear model
  28. mul = tf.multiply(X, W)
  29. pred = tf.add(mul, b)
  30. # Mean squared error
  31. sub = pred-Y
  32. pow = tf.pow(sub, 2)
  33. reduce = tf.reduce_sum(pow)
  34. cost = reduce/(2*n_samples)
  35. # Gradient descent
  36. # Note, minimize() knows to modify W and b because Variable objects are trainable=True by default
  37. grad = tf.train.GradientDescentOptimizer(learning_rate)
  38. optimizer = grad.minimize(cost)
  39. # Initialize the variables (i.e. assign their default value)
  40. init = tf.global_variables_initializer()
  41. # Start training
  42. with tf.Session() as sess:
  43. # Run the initializer
  44. sess.run(init)
  45. # Fit all training data
  46. for epoch in range(training_epochs):
  47. for (x, y) in zip(train_X, train_Y):
  48. sess.run(optimizer, feed_dict={X: x, Y: y})
  49. # Display logs per epoch step
  50. if (epoch+1) % display_step == 0:
  51. c = sess.run(cost, feed_dict={X: train_X, Y:train_Y})
  52. print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \
  53. "W=", sess.run(W), "b=", sess.run(b))
  54. print("Optimization Finished!")
  55. training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
  56. print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n')
  57. # Graphic display
  58. plt.plot(train_X, train_Y, 'ro', label='Original data')
  59. plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
  60. plt.legend()
  61. plt.show()
  62. # Testing example, as requested (Issue #2)
  63. test_X = numpy.asarray([6.83, 4.668, 8.9, 7.91, 5.7, 8.7, 3.1, 2.1])
  64. test_Y = numpy.asarray([1.84, 2.273, 3.2, 2.831, 2.92, 3.24, 1.35, 1.03])
  65. print("Testing... (Mean square loss Comparison)")
  66. testing_cost = sess.run(
  67. tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * test_X.shape[0]),
  68. feed_dict={X: test_X, Y: test_Y}) # same function as cost above
  69. print("Testing cost=", testing_cost)
  70. print("Absolute mean square loss difference:", abs(
  71. training_cost - testing_cost))
  72. plt.plot(test_X, test_Y, 'bo', label='Testing data')
  73. plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
  74. plt.legend()
  75. plt.show()

tensorflow框架的.NET版本,提供了丰富的特性和API,可以借此很方便地在.NET平台下搭建深度学习训练与推理流程。