You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

TextClassificationWithMovieReviews.cs 4.4 kB

6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128
  1. using System;
  2. using System.Collections.Generic;
  3. using System.IO;
  4. using Tensorflow;
  5. using Newtonsoft.Json;
  6. using System.Linq;
  7. using System.Text.RegularExpressions;
  8. using NumSharp;
  9. namespace TensorFlowNET.Examples
  10. {
  11. public class TextClassificationWithMovieReviews : Python, IExample
  12. {
  13. public int Priority => 9;
  14. public bool Enabled { get; set; } = false;
  15. public string Name => "Movie Reviews";
  16. public bool ImportGraph { get; set; } = true;
  17. string dir = "text_classification_with_movie_reviews";
  18. string dataFile = "imdb.zip";
  19. NDArray train_data, train_labels, test_data, test_labels;
  20. public bool Run()
  21. {
  22. PrepareData();
  23. Console.WriteLine($"Training entries: {train_data.size}, labels: {train_labels.size}");
  24. // A dictionary mapping words to an integer index
  25. var word_index = GetWordIndex();
  26. train_data = keras.preprocessing.sequence.pad_sequences(train_data,
  27. value: word_index["<PAD>"],
  28. padding: "post",
  29. maxlen: 256);
  30. test_data = keras.preprocessing.sequence.pad_sequences(test_data,
  31. value: word_index["<PAD>"],
  32. padding: "post",
  33. maxlen: 256);
  34. // input shape is the vocabulary count used for the movie reviews (10,000 words)
  35. int vocab_size = 10000;
  36. var model = keras.Sequential();
  37. model.add(keras.layers.Embedding(vocab_size, 16));
  38. return false;
  39. }
  40. public void PrepareData()
  41. {
  42. Directory.CreateDirectory(dir);
  43. // get model file
  44. string url = $"https://github.com/SciSharp/TensorFlow.NET/raw/master/data/{dataFile}";
  45. Utility.Web.Download(url, dir, "imdb.zip");
  46. Utility.Compress.UnZip(Path.Join(dir, $"imdb.zip"), dir);
  47. // prepare training dataset
  48. var x_train = ReadData(Path.Join(dir, "x_train.txt"));
  49. var labels_train = ReadData(Path.Join(dir, "y_train.txt"));
  50. var indices_train = ReadData(Path.Join(dir, "indices_train.txt"));
  51. x_train = x_train[indices_train];
  52. labels_train = labels_train[indices_train];
  53. var x_test = ReadData(Path.Join(dir, "x_test.txt"));
  54. var labels_test = ReadData(Path.Join(dir, "y_test.txt"));
  55. var indices_test = ReadData(Path.Join(dir, "indices_test.txt"));
  56. x_test = x_test[indices_test];
  57. labels_test = labels_test[indices_test];
  58. // not completed
  59. var xs = x_train.hstack<int>(x_test);
  60. var labels = labels_train.hstack<int>(labels_test);
  61. var idx = x_train.size;
  62. var y_train = labels_train;
  63. var y_test = labels_test;
  64. x_train = train_data;
  65. train_labels = y_train;
  66. test_data = x_test;
  67. test_labels = y_test;
  68. }
  69. private NDArray ReadData(string file)
  70. {
  71. var lines = File.ReadAllLines(file);
  72. var nd = new NDArray(lines[0].StartsWith("[") ? typeof(object) : np.int32, new Shape(lines.Length));
  73. if (lines[0].StartsWith("["))
  74. {
  75. for (int i = 0; i < lines.Length; i++)
  76. {
  77. var matches = Regex.Matches(lines[i], @"\d+\s*");
  78. var data = new int[matches.Count];
  79. for (int j = 0; j < data.Length; j++)
  80. data[j] = Convert.ToInt32(matches[j].Value);
  81. nd[i] = data.ToArray();
  82. }
  83. }
  84. else
  85. {
  86. for (int i = 0; i < lines.Length; i++)
  87. nd[i] = Convert.ToInt32(lines[i]);
  88. }
  89. return nd;
  90. }
  91. private Dictionary<string, int> GetWordIndex()
  92. {
  93. var result = new Dictionary<string, int>();
  94. var json = File.ReadAllText(Path.Join(dir, "imdb_word_index.json"));
  95. var dict = JsonConvert.DeserializeObject<Dictionary<string, int>>(json);
  96. dict.Keys.Select(k => result[k] = dict[k] + 3).ToList();
  97. result["<PAD>"] = 0;
  98. result["<START>"] = 1;
  99. result["<UNK>"] = 2; // unknown
  100. result["<UNUSED>"] = 3;
  101. return result;
  102. }
  103. }
  104. }

tensorflow框架的.NET版本,提供了丰富的特性和API,可以借此很方便地在.NET平台下搭建深度学习训练与推理流程。