You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

RetrainImageClassifier.cs 34 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670
  1. using Google.Protobuf;
  2. using NumSharp;
  3. using System;
  4. using System.Collections.Generic;
  5. using System.Diagnostics;
  6. using System.IO;
  7. using System.Linq;
  8. using System.Text;
  9. using Tensorflow;
  10. using TensorFlowNET.Examples.Utility;
  11. using static Tensorflow.Python;
  12. namespace TensorFlowNET.Examples.ImageProcess
  13. {
  14. /// <summary>
  15. /// In this tutorial, we will reuse the feature extraction capabilities from powerful image classifiers trained on ImageNet
  16. /// and simply train a new classification layer on top. Transfer learning is a technique that shortcuts much of this
  17. /// by taking a piece of a model that has already been trained on a related task and reusing it in a new model.
  18. ///
  19. /// https://www.tensorflow.org/hub/tutorials/image_retraining
  20. /// </summary>
  21. public class RetrainImageClassifier : IExample
  22. {
  23. public int Priority => 16;
  24. public bool Enabled { get; set; } = false;
  25. public bool ImportGraph { get; set; } = true;
  26. public string Name => "Retrain Image Classifier";
  27. const string data_dir = "retrain_images";
  28. string summaries_dir = Path.Join(data_dir, "retrain_logs");
  29. string image_dir = Path.Join(data_dir, "flower_photos");
  30. string bottleneck_dir = Path.Join(data_dir, "bottleneck");
  31. string output_graph = Path.Join(data_dir, "output_graph.pb");
  32. string output_labels = Path.Join(data_dir, "output_labels.txt");
  33. // The location where variable checkpoints will be stored.
  34. string CHECKPOINT_NAME = Path.Join(data_dir, "_retrain_checkpoint");
  35. string tfhub_module = "https://tfhub.dev/google/imagenet/inception_v3/feature_vector/3";
  36. string final_tensor_name = "final_result";
  37. float testing_percentage = 0.1f;
  38. float validation_percentage = 0.1f;
  39. float learning_rate = 0.01f;
  40. Tensor resized_image_tensor;
  41. Dictionary<string, Dictionary<string, string[]>> image_lists;
  42. int how_many_training_steps = 100;
  43. int eval_step_interval = 10;
  44. int train_batch_size = 100;
  45. int test_batch_size = -1;
  46. int validation_batch_size = 100;
  47. int intermediate_store_frequency = 0;
  48. int class_count = 0;
  49. const int MAX_NUM_IMAGES_PER_CLASS = 134217727;
  50. Operation train_step;
  51. Tensor final_tensor;
  52. Tensor bottleneck_input;
  53. Tensor cross_entropy;
  54. Tensor ground_truth_input;
  55. public bool Run()
  56. {
  57. PrepareData();
  58. // Set up the pre-trained graph.
  59. var (graph, bottleneck_tensor, resized_image_tensor, wants_quantization) =
  60. create_module_graph();
  61. // Add the new layer that we'll be training.
  62. with(graph.as_default(), delegate
  63. {
  64. (train_step, cross_entropy, bottleneck_input,
  65. ground_truth_input, final_tensor) = add_final_retrain_ops(
  66. class_count, final_tensor_name, bottleneck_tensor,
  67. wants_quantization, is_training: true);
  68. });
  69. /*Tensor bottleneck_tensor = graph.OperationByName("module_apply_default/hub_output/feature_vector/SpatialSqueeze");
  70. Tensor resized_image_tensor = graph.OperationByName("Placeholder");
  71. Tensor final_tensor = graph.OperationByName(final_tensor_name);
  72. Tensor ground_truth_input = graph.OperationByName("input/GroundTruthInput");
  73. train_step = graph.OperationByName("train/GradientDescent");
  74. Tensor bottleneck_input = graph.OperationByName("input/BottleneckInputPlaceholder");
  75. Tensor cross_entropy = graph.OperationByName("cross_entropy/sparse_softmax_cross_entropy_loss/value");*/
  76. var sw = new Stopwatch();
  77. with(tf.Session(graph), sess =>
  78. {
  79. // Initialize all weights: for the module to their pretrained values,
  80. // and for the newly added retraining layer to random initial values.
  81. var init = tf.global_variables_initializer();
  82. sess.run(init);
  83. var (jpeg_data_tensor, decoded_image_tensor) = add_jpeg_decoding();
  84. // We'll make sure we've calculated the 'bottleneck' image summaries and
  85. // cached them on disk.
  86. cache_bottlenecks(sess, image_lists, image_dir,
  87. bottleneck_dir, jpeg_data_tensor,
  88. decoded_image_tensor, resized_image_tensor,
  89. bottleneck_tensor, tfhub_module);
  90. // Create the operations we need to evaluate the accuracy of our new layer.
  91. var (evaluation_step, _) = add_evaluation_step(final_tensor, ground_truth_input);
  92. // Merge all the summaries and write them out to the summaries_dir
  93. var merged = tf.summary.merge_all();
  94. var train_writer = tf.summary.FileWriter(summaries_dir + "/train", sess.graph);
  95. var validation_writer = tf.summary.FileWriter(summaries_dir + "/validation", sess.graph);
  96. // Create a train saver that is used to restore values into an eval graph
  97. // when exporting models.
  98. var train_saver = tf.train.Saver();
  99. for (int i = 0; i < how_many_training_steps; i++)
  100. {
  101. var (train_bottlenecks, train_ground_truth, _) = get_random_cached_bottlenecks(
  102. sess, image_lists, train_batch_size, "training",
  103. bottleneck_dir, image_dir, jpeg_data_tensor,
  104. decoded_image_tensor, resized_image_tensor, bottleneck_tensor,
  105. tfhub_module);
  106. // Feed the bottlenecks and ground truth into the graph, and run a training
  107. // step. Capture training summaries for TensorBoard with the `merged` op.
  108. var results = sess.run(
  109. new ITensorOrOperation[] { merged, train_step },
  110. new FeedItem(bottleneck_input, train_bottlenecks),
  111. new FeedItem(ground_truth_input, train_ground_truth));
  112. var train_summary = results[0];
  113. // TODO
  114. train_writer.add_summary(train_summary, i);
  115. // Every so often, print out how well the graph is training.
  116. bool is_last_step = (i + 1 == how_many_training_steps);
  117. if ((i % eval_step_interval) == 0 || is_last_step)
  118. {
  119. results = sess.run(
  120. new Tensor[] { evaluation_step, cross_entropy },
  121. new FeedItem(bottleneck_input, train_bottlenecks),
  122. new FeedItem(ground_truth_input, train_ground_truth));
  123. (float train_accuracy, float cross_entropy_value) = (results[0], results[1]);
  124. print($"{DateTime.Now}: Step {i}: Train accuracy = {train_accuracy * 100}%");
  125. print($"{DateTime.Now}: Step {i}: Cross entropy = {cross_entropy_value}");
  126. var (validation_bottlenecks, validation_ground_truth, _) = get_random_cached_bottlenecks(
  127. sess, image_lists, validation_batch_size, "validation",
  128. bottleneck_dir, image_dir, jpeg_data_tensor,
  129. decoded_image_tensor, resized_image_tensor, bottleneck_tensor,
  130. tfhub_module);
  131. // Run a validation step and capture training summaries for TensorBoard
  132. // with the `merged` op.
  133. results = sess.run(new Tensor[] { merged, evaluation_step },
  134. new FeedItem(bottleneck_input, validation_bottlenecks),
  135. new FeedItem(ground_truth_input, validation_ground_truth));
  136. (string validation_summary, float validation_accuracy) = (results[0], results[1]);
  137. validation_writer.add_summary(validation_summary, i);
  138. print($"{DateTime.Now}: Step {i + 1}: Validation accuracy = {validation_accuracy * 100}% (N={len(validation_bottlenecks)})");
  139. }
  140. // Store intermediate results
  141. int intermediate_frequency = intermediate_store_frequency;
  142. if (intermediate_frequency > 0 && i % intermediate_frequency == 0 && i > 0)
  143. {
  144. }
  145. }
  146. // After training is complete, force one last save of the train checkpoint.
  147. train_saver.save(sess, CHECKPOINT_NAME);
  148. // We've completed all our training, so run a final test evaluation on
  149. // some new images we haven't used before.
  150. var (test_accuracy, predictions) = run_final_eval(sess, null, class_count, image_lists,
  151. jpeg_data_tensor, decoded_image_tensor, resized_image_tensor,
  152. bottleneck_tensor);
  153. // Write out the trained graph and labels with the weights stored as
  154. // constants.
  155. print($"final test accuracy: {test_accuracy}");
  156. print($"Save final result to : {output_graph}");
  157. save_graph_to_file(output_graph, class_count);
  158. });
  159. return false;
  160. }
  161. /// <summary>
  162. /// Runs a final evaluation on an eval graph using the test data set.
  163. /// </summary>
  164. /// <param name="train_session"></param>
  165. /// <param name="module_spec"></param>
  166. /// <param name="class_count"></param>
  167. /// <param name="image_lists"></param>
  168. /// <param name="jpeg_data_tensor"></param>
  169. /// <param name="decoded_image_tensor"></param>
  170. /// <param name="resized_image_tensor"></param>
  171. /// <param name="bottleneck_tensor"></param>
  172. private (float, NDArray) run_final_eval(Session train_session, object module_spec, int class_count,
  173. Dictionary<string, Dictionary<string, string[]>> image_lists,
  174. Tensor jpeg_data_tensor, Tensor decoded_image_tensor,
  175. Tensor resized_image_tensor, Tensor bottleneck_tensor)
  176. {
  177. var (test_bottlenecks, test_ground_truth, test_filenames) = get_random_cached_bottlenecks(train_session, image_lists,
  178. test_batch_size, "testing", bottleneck_dir, image_dir, jpeg_data_tensor,
  179. decoded_image_tensor, resized_image_tensor, bottleneck_tensor, tfhub_module);
  180. var (eval_session, _, bottleneck_input, ground_truth_input, evaluation_step,
  181. prediction) = build_eval_session(class_count);
  182. var results = eval_session.run(new Tensor[] { evaluation_step, prediction },
  183. new FeedItem(bottleneck_input, test_bottlenecks),
  184. new FeedItem(ground_truth_input, test_ground_truth));
  185. return (results[0], results[1]);
  186. }
  187. private (Session, Tensor, Tensor, Tensor, Tensor, Tensor)
  188. build_eval_session(int class_count)
  189. {
  190. // If quantized, we need to create the correct eval graph for exporting.
  191. var (eval_graph, bottleneck_tensor, resized_input_tensor, wants_quantization) = create_module_graph();
  192. var eval_sess = tf.Session(graph: eval_graph);
  193. Tensor evaluation_step = null;
  194. Tensor prediction = null;
  195. with(eval_graph.as_default(), graph =>
  196. {
  197. // Add the new layer for exporting.
  198. var (_, _, bottleneck_input, ground_truth_input, final_tensor) =
  199. add_final_retrain_ops(class_count, final_tensor_name, bottleneck_tensor,
  200. wants_quantization, is_training: false);
  201. // Now we need to restore the values from the training graph to the eval
  202. // graph.
  203. tf.train.Saver().restore(eval_sess, CHECKPOINT_NAME);
  204. (evaluation_step, prediction) = add_evaluation_step(final_tensor,
  205. ground_truth_input);
  206. });
  207. return (eval_sess, resized_input_tensor, bottleneck_input, ground_truth_input,
  208. evaluation_step, prediction);
  209. }
  210. /// <summary>
  211. /// Adds a new softmax and fully-connected layer for training and eval.
  212. ///
  213. /// We need to retrain the top layer to identify our new classes, so this function
  214. /// adds the right operations to the graph, along with some variables to hold the
  215. /// weights, and then sets up all the gradients for the backward pass.
  216. ///
  217. /// The set up for the softmax and fully-connected layers is based on:
  218. /// https://www.tensorflow.org/tutorials/mnist/beginners/index.html
  219. /// </summary>
  220. /// <param name="class_count"></param>
  221. /// <param name="final_tensor_name"></param>
  222. /// <param name="bottleneck_tensor"></param>
  223. /// <param name="quantize_layer"></param>
  224. /// <param name="is_training"></param>
  225. /// <returns></returns>
  226. private (Operation, Tensor, Tensor, Tensor, Tensor) add_final_retrain_ops(int class_count, string final_tensor_name,
  227. Tensor bottleneck_tensor, bool quantize_layer, bool is_training)
  228. {
  229. var (batch_size, bottleneck_tensor_size) = (bottleneck_tensor.GetShape().Dimensions[0], bottleneck_tensor.GetShape().Dimensions[1]);
  230. with(tf.name_scope("input"), scope =>
  231. {
  232. bottleneck_input = tf.placeholder_with_default(
  233. bottleneck_tensor,
  234. shape: bottleneck_tensor.GetShape().Dimensions,
  235. name: "BottleneckInputPlaceholder");
  236. ground_truth_input = tf.placeholder(tf.int64, new TensorShape(batch_size), name: "GroundTruthInput");
  237. });
  238. // Organizing the following ops so they are easier to see in TensorBoard.
  239. string layer_name = "final_retrain_ops";
  240. Tensor logits = null;
  241. with(tf.name_scope(layer_name), scope =>
  242. {
  243. RefVariable layer_weights = null;
  244. with(tf.name_scope("weights"), delegate
  245. {
  246. var initial_value = tf.truncated_normal(new int[] { bottleneck_tensor_size, class_count }, stddev: 0.001f);
  247. layer_weights = tf.Variable(initial_value, name: "final_weights");
  248. variable_summaries(layer_weights);
  249. });
  250. RefVariable layer_biases = null;
  251. with(tf.name_scope("biases"), delegate
  252. {
  253. layer_biases = tf.Variable(tf.zeros((class_count)), name: "final_biases");
  254. variable_summaries(layer_biases);
  255. });
  256. with(tf.name_scope("Wx_plus_b"), delegate
  257. {
  258. logits = tf.matmul(bottleneck_input, layer_weights) + layer_biases;
  259. tf.summary.histogram("pre_activations", logits);
  260. });
  261. });
  262. final_tensor = tf.nn.softmax(logits, name: final_tensor_name);
  263. // The tf.contrib.quantize functions rewrite the graph in place for
  264. // quantization. The imported model graph has already been rewritten, so upon
  265. // calling these rewrites, only the newly added final layer will be
  266. // transformed.
  267. if (quantize_layer)
  268. {
  269. throw new NotImplementedException("quantize_layer");
  270. /*if (is_training)
  271. tf.contrib.quantize.create_training_graph();
  272. else
  273. tf.contrib.quantize.create_eval_graph();*/
  274. }
  275. tf.summary.histogram("activations", final_tensor);
  276. // If this is an eval graph, we don't need to add loss ops or an optimizer.
  277. if (!is_training)
  278. return (null, null, bottleneck_input, ground_truth_input, final_tensor);
  279. Tensor cross_entropy_mean = null;
  280. with(tf.name_scope("cross_entropy"), delegate
  281. {
  282. cross_entropy_mean = tf.losses.sparse_softmax_cross_entropy(
  283. labels: ground_truth_input, logits: logits);
  284. });
  285. tf.summary.scalar("cross_entropy", cross_entropy_mean);
  286. with(tf.name_scope("train"), delegate
  287. {
  288. var optimizer = tf.train.GradientDescentOptimizer(learning_rate);
  289. train_step = optimizer.minimize(cross_entropy_mean);
  290. });
  291. return (train_step, cross_entropy_mean, bottleneck_input, ground_truth_input,
  292. final_tensor);
  293. }
  294. private void variable_summaries(RefVariable var)
  295. {
  296. with(tf.name_scope("summaries"), delegate
  297. {
  298. var mean = tf.reduce_mean(var);
  299. tf.summary.scalar("mean", mean);
  300. Tensor stddev = null;
  301. with(tf.name_scope("stddev"), delegate {
  302. stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)));
  303. });
  304. tf.summary.scalar("stddev", stddev);
  305. tf.summary.scalar("max", tf.reduce_max(var));
  306. tf.summary.scalar("min", tf.reduce_min(var));
  307. tf.summary.histogram("histogram", var);
  308. });
  309. }
  310. private (Graph, Tensor, Tensor, bool) create_module_graph()
  311. {
  312. var (height, width) = (299, 299);
  313. return with(tf.Graph().as_default(), graph =>
  314. {
  315. tf.train.import_meta_graph("graph/InceptionV3.meta");
  316. Tensor resized_input_tensor = graph.OperationByName("Placeholder"); //tf.placeholder(tf.float32, new TensorShape(-1, height, width, 3));
  317. // var m = hub.Module(module_spec);
  318. Tensor bottleneck_tensor = graph.OperationByName("module_apply_default/hub_output/feature_vector/SpatialSqueeze");// m(resized_input_tensor);
  319. var wants_quantization = false;
  320. return (graph, bottleneck_tensor, resized_input_tensor, wants_quantization);
  321. });
  322. }
  323. private (NDArray, long[], string[]) get_random_cached_bottlenecks(Session sess, Dictionary<string, Dictionary<string, string[]>> image_lists,
  324. int how_many, string category, string bottleneck_dir, string image_dir,
  325. Tensor jpeg_data_tensor, Tensor decoded_image_tensor, Tensor resized_input_tensor,
  326. Tensor bottleneck_tensor, string module_name)
  327. {
  328. var bottlenecks = new List<float[]>();
  329. var ground_truths = new List<long>();
  330. var filenames = new List<string>();
  331. class_count = image_lists.Keys.Count;
  332. if (how_many >= 0)
  333. {
  334. // Retrieve a random sample of bottlenecks.
  335. foreach (var unused_i in range(how_many))
  336. {
  337. int label_index = new Random().Next(class_count);
  338. string label_name = image_lists.Keys.ToArray()[label_index];
  339. int image_index = new Random().Next(MAX_NUM_IMAGES_PER_CLASS);
  340. string image_name = get_image_path(image_lists, label_name, image_index,
  341. image_dir, category);
  342. var bottleneck = get_or_create_bottleneck(
  343. sess, image_lists, label_name, image_index, image_dir, category,
  344. bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,
  345. resized_input_tensor, bottleneck_tensor, module_name);
  346. bottlenecks.Add(bottleneck);
  347. ground_truths.Add(label_index);
  348. filenames.Add(image_name);
  349. }
  350. }
  351. else
  352. {
  353. // Retrieve all bottlenecks.
  354. foreach (var (label_index, label_name) in enumerate(image_lists.Keys.ToArray()))
  355. {
  356. foreach(var (image_index, image_name) in enumerate(image_lists[label_name][category]))
  357. {
  358. var bottleneck = get_or_create_bottleneck(
  359. sess, image_lists, label_name, image_index, image_dir, category,
  360. bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,
  361. resized_input_tensor, bottleneck_tensor, module_name);
  362. bottlenecks.Add(bottleneck);
  363. ground_truths.Add(label_index);
  364. filenames.Add(image_name);
  365. }
  366. }
  367. }
  368. return (bottlenecks.ToArray(), ground_truths.ToArray(), filenames.ToArray());
  369. }
  370. /// <summary>
  371. /// Inserts the operations we need to evaluate the accuracy of our results.
  372. /// </summary>
  373. /// <param name="result_tensor"></param>
  374. /// <param name="ground_truth_tensor"></param>
  375. /// <returns></returns>
  376. private (Tensor, Tensor) add_evaluation_step(Tensor result_tensor, Tensor ground_truth_tensor)
  377. {
  378. Tensor evaluation_step = null, correct_prediction = null, prediction = null;
  379. with(tf.name_scope("accuracy"), scope =>
  380. {
  381. with(tf.name_scope("correct_prediction"), delegate
  382. {
  383. prediction = tf.argmax(result_tensor, 1);
  384. correct_prediction = tf.equal(prediction, ground_truth_tensor);
  385. });
  386. with(tf.name_scope("accuracy"), delegate
  387. {
  388. evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32));
  389. });
  390. });
  391. tf.summary.scalar("accuracy", evaluation_step);
  392. return (evaluation_step, prediction);
  393. }
  394. /// <summary>
  395. /// Ensures all the training, testing, and validation bottlenecks are cached.
  396. /// </summary>
  397. /// <param name="sess"></param>
  398. /// <param name="image_lists"></param>
  399. /// <param name="image_dir"></param>
  400. /// <param name="bottleneck_dir"></param>
  401. /// <param name="jpeg_data_tensor"></param>
  402. /// <param name="decoded_image_tensor"></param>
  403. /// <param name="resized_image_tensor"></param>
  404. /// <param name="bottleneck_tensor"></param>
  405. /// <param name="tfhub_module"></param>
  406. private void cache_bottlenecks(Session sess, Dictionary<string, Dictionary<string, string[]>> image_lists,
  407. string image_dir, string bottleneck_dir, Tensor jpeg_data_tensor, Tensor decoded_image_tensor,
  408. Tensor resized_input_tensor, Tensor bottleneck_tensor, string module_name)
  409. {
  410. int how_many_bottlenecks = 0;
  411. foreach(var (label_name, label_lists) in image_lists)
  412. {
  413. foreach(var category in new string[] { "training", "testing", "validation" })
  414. {
  415. var category_list = label_lists[category];
  416. foreach(var (index, unused_base_name) in enumerate(category_list))
  417. {
  418. get_or_create_bottleneck(sess, image_lists, label_name, index, image_dir, category,
  419. bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,
  420. resized_input_tensor, bottleneck_tensor, module_name);
  421. how_many_bottlenecks++;
  422. if (how_many_bottlenecks % 100 == 0)
  423. print($"{how_many_bottlenecks} bottleneck files created.");
  424. }
  425. }
  426. }
  427. }
  428. private float[] get_or_create_bottleneck(Session sess, Dictionary<string, Dictionary<string, string[]>> image_lists,
  429. string label_name, int index, string image_dir, string category, string bottleneck_dir,
  430. Tensor jpeg_data_tensor, Tensor decoded_image_tensor, Tensor resized_input_tensor,
  431. Tensor bottleneck_tensor, string module_name)
  432. {
  433. var label_lists = image_lists[label_name];
  434. var sub_dir_path = Path.Join(bottleneck_dir, label_name);
  435. Directory.CreateDirectory(sub_dir_path);
  436. string bottleneck_path = get_bottleneck_path(image_lists, label_name, index,
  437. bottleneck_dir, category, module_name);
  438. if (!File.Exists(bottleneck_path))
  439. create_bottleneck_file(bottleneck_path, image_lists, label_name, index,
  440. image_dir, category, sess, jpeg_data_tensor,
  441. decoded_image_tensor, resized_input_tensor,
  442. bottleneck_tensor);
  443. var bottleneck_string = File.ReadAllText(bottleneck_path);
  444. var bottleneck_values = Array.ConvertAll(bottleneck_string.Split(','), x => float.Parse(x));
  445. return bottleneck_values;
  446. }
  447. private void create_bottleneck_file(string bottleneck_path, Dictionary<string, Dictionary<string, string[]>> image_lists,
  448. string label_name, int index, string image_dir, string category, Session sess,
  449. Tensor jpeg_data_tensor, Tensor decoded_image_tensor, Tensor resized_input_tensor, Tensor bottleneck_tensor)
  450. {
  451. // Create a single bottleneck file.
  452. print("Creating bottleneck at " + bottleneck_path);
  453. var image_path = get_image_path(image_lists, label_name, index, image_dir, category);
  454. if (!File.Exists(image_path))
  455. print($"File does not exist {image_path}");
  456. var image_data = File.ReadAllBytes(image_path);
  457. var bottleneck_values = run_bottleneck_on_image(
  458. sess, image_data, jpeg_data_tensor, decoded_image_tensor,
  459. resized_input_tensor, bottleneck_tensor);
  460. var values = bottleneck_values.Data<float>();
  461. var bottleneck_string = string.Join(",", values);
  462. File.WriteAllText(bottleneck_path, bottleneck_string);
  463. }
  464. /// <summary>
  465. /// Runs inference on an image to extract the 'bottleneck' summary layer.
  466. /// </summary>
  467. /// <param name="sess">Current active TensorFlow Session.</param>
  468. /// <param name="image_data">Data of raw JPEG data.</param>
  469. /// <param name="image_data_tensor">Input data layer in the graph.</param>
  470. /// <param name="decoded_image_tensor">Output of initial image resizing and preprocessing.</param>
  471. /// <param name="resized_input_tensor">The input node of the recognition graph.</param>
  472. /// <param name="bottleneck_tensor">Layer before the final softmax.</param>
  473. /// <returns></returns>
  474. private NDArray run_bottleneck_on_image(Session sess, byte[] image_data, Tensor image_data_tensor,
  475. Tensor decoded_image_tensor, Tensor resized_input_tensor, Tensor bottleneck_tensor)
  476. {
  477. // First decode the JPEG image, resize it, and rescale the pixel values.
  478. var resized_input_values = sess.run(decoded_image_tensor, new FeedItem(image_data_tensor, image_data));
  479. // Then run it through the recognition network.
  480. var bottleneck_values = sess.run(bottleneck_tensor, new FeedItem(resized_input_tensor, resized_input_values));
  481. bottleneck_values = np.squeeze(bottleneck_values);
  482. return bottleneck_values;
  483. }
  484. private string get_bottleneck_path(Dictionary<string, Dictionary<string, string[]>> image_lists, string label_name, int index,
  485. string bottleneck_dir, string category, string module_name)
  486. {
  487. module_name = (module_name.Replace("://", "~") // URL scheme.
  488. .Replace('/', '~') // URL and Unix paths.
  489. .Replace(':', '~').Replace('\\', '~')); // Windows paths.
  490. return get_image_path(image_lists, label_name, index, bottleneck_dir,
  491. category) + "_" + module_name + ".txt";
  492. }
  493. private string get_image_path(Dictionary<string, Dictionary<string, string[]>> image_lists, string label_name,
  494. int index, string image_dir, string category)
  495. {
  496. if (!image_lists.ContainsKey(label_name))
  497. print($"Label does not exist {label_name}");
  498. var label_lists = image_lists[label_name];
  499. if (!label_lists.ContainsKey(category))
  500. print($"Category does not exist {category}");
  501. var category_list = label_lists[category];
  502. if (category_list.Length == 0)
  503. print($"Label {label_name} has no images in the category {category}.");
  504. var mod_index = index % len(category_list);
  505. var base_name = category_list[mod_index].Split(Path.DirectorySeparatorChar).Last();
  506. var sub_dir = label_name;
  507. var full_path = Path.Join(image_dir, sub_dir, base_name);
  508. return full_path;
  509. }
  510. /// <summary>
  511. /// Saves an graph to file, creating a valid quantized one if necessary.
  512. /// </summary>
  513. /// <param name="graph_file_name"></param>
  514. /// <param name="class_count"></param>
  515. private void save_graph_to_file(string graph_file_name, int class_count)
  516. {
  517. var (sess, _, _, _, _, _) = build_eval_session(class_count);
  518. var graph = sess.graph;
  519. var output_graph_def = tf.graph_util.convert_variables_to_constants(
  520. sess, graph.as_graph_def(), new string[] { final_tensor_name });
  521. File.WriteAllBytes(graph_file_name, output_graph_def.ToByteArray());
  522. }
  523. public void PrepareData()
  524. {
  525. // get a set of images to teach the network about the new classes
  526. string fileName = "flower_photos.tgz";
  527. string url = $"http://download.tensorflow.org/models/{fileName}";
  528. Web.Download(url, data_dir, fileName);
  529. Compress.ExtractTGZ(Path.Join(data_dir, fileName), data_dir);
  530. // download graph meta data
  531. url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/InceptionV3.meta";
  532. Web.Download(url, "graph", "InceptionV3.meta");
  533. // Prepare necessary directories that can be used during training
  534. Directory.CreateDirectory(summaries_dir);
  535. Directory.CreateDirectory(bottleneck_dir);
  536. // Look at the folder structure, and create lists of all the images.
  537. image_lists = create_image_lists();
  538. class_count = len(image_lists);
  539. if (class_count == 0)
  540. print($"No valid folders of images found at {image_dir}");
  541. if (class_count == 1)
  542. print("Only one valid folder of images found at " +
  543. image_dir +
  544. " - multiple classes are needed for classification.");
  545. }
  546. private (Tensor, Tensor) add_jpeg_decoding()
  547. {
  548. // height, width, depth
  549. var input_dim = (299, 299, 3);
  550. var jpeg_data = tf.placeholder(tf.chars, name: "DecodeJPGInput");
  551. var decoded_image = tf.image.decode_jpeg(jpeg_data, channels: input_dim.Item3);
  552. // Convert from full range of uint8 to range [0,1] of float32.
  553. var decoded_image_as_float = tf.image.convert_image_dtype(decoded_image, tf.float32);
  554. var decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0);
  555. var resize_shape = tf.stack(new int[] { input_dim.Item1, input_dim.Item2 });
  556. var resize_shape_as_int = tf.cast(resize_shape, dtype: tf.int32);
  557. var resized_image = tf.image.resize_bilinear(decoded_image_4d, resize_shape_as_int);
  558. return (jpeg_data, resized_image);
  559. }
  560. /// <summary>
  561. /// Builds a list of training images from the file system.
  562. /// </summary>
  563. private Dictionary<string, Dictionary<string, string[]>> create_image_lists()
  564. {
  565. var sub_dirs = tf.gfile.Walk(image_dir)
  566. .Select(x => x.Item1)
  567. .OrderBy(x => x)
  568. .ToArray();
  569. var result = new Dictionary<string, Dictionary<string, string[]>>();
  570. foreach(var sub_dir in sub_dirs)
  571. {
  572. var dir_name = sub_dir.Split(Path.DirectorySeparatorChar).Last();
  573. print($"Looking for images in '{dir_name}'");
  574. var file_list = Directory.GetFiles(sub_dir);
  575. if (len(file_list) < 20)
  576. print($"WARNING: Folder has less than 20 images, which may cause issues.");
  577. var label_name = dir_name.ToLower();
  578. result[label_name] = new Dictionary<string, string[]>();
  579. int testing_count = (int)Math.Floor(file_list.Length * testing_percentage);
  580. int validation_count = (int)Math.Floor(file_list.Length * validation_percentage);
  581. result[label_name]["testing"] = file_list.Take(testing_count).ToArray();
  582. result[label_name]["validation"] = file_list.Skip(testing_count).Take(validation_count).ToArray();
  583. result[label_name]["training"] = file_list.Skip(testing_count + validation_count).ToArray();
  584. }
  585. return result;
  586. }
  587. }
  588. }