You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

KerasLayerTest.cs 2.7 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546
  1. using static Tensorflow.Binding;
  2. using static Tensorflow.HubAPI;
  3. namespace Tensorflow.Hub.Unittest
  4. {
  5. [TestClass]
  6. public class KerasLayerTest
  7. {
  8. [TestMethod]
  9. public void SmallBert()
  10. {
  11. var layer = hub.KerasLayer("https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-6_H-256_A-4/1");
  12. var input_type_ids = tf.convert_to_tensor(new int[] { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  13. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  14. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  15. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  16. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  17. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, dtype: tf.int32);
  18. input_type_ids = tf.reshape(input_type_ids, (1, 128));
  19. var input_word_ids = tf.convert_to_tensor(new int[] { 101, 2129, 2024, 2017, 102, 0, 0, 0, 0, 0, 0,
  20. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  21. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  22. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  23. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  24. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  25. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  26. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  27. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  28. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  29. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  30. 0, 0, 0, 0, 0, 0, 0 }, dtype: tf.int32);
  31. input_word_ids = tf.reshape(input_word_ids, (1, 128));
  32. var input_mask = tf.convert_to_tensor(new int[] { 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  33. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  34. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  35. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  36. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  37. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, dtype: dtypes.int32);
  38. input_mask = tf.reshape(input_mask, (1, 128));
  39. var result = layer.Apply(new Tensors(input_type_ids, input_word_ids, input_mask));
  40. }
  41. }
  42. }