|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 |
- # Chapter. Constant
-
- In TensorFlow, a constant is a special Tensor that cannot be modified while the graph is running. Like in a linear model $\tilde{y_i}=\boldsymbol{w}x_i+b$, constant $b$ can be represented as a Constant Tensor. Since the constant is a Tensor, it also has all the data characteristics of Tensor, including:
-
- * value: scalar value or constant list matching the data type defined in TensorFlow;
- * dtype: data type;
- * shape: dimensions;
- * name: constant's name;
-
- 在TensorFlow中,常量是一种特殊的Tensor,它在计算图运行的时候,不能被修改。比如在线性模型里$\tilde{y_i}=\boldsymbol{w}x_i+b$, 常数$b$就可以用一个常量来表示。既然常量是一种Tensor,那么它也就具有Tensor的所有数据特性,它包括:
-
- * value: 符合TensorFlow中定义的数据类型的常数值或者常数列表;
- * dtype:数据类型;
- * shape:常量的形状;
- * name:常量的名字;
-
-
-
- ##### How to create a Constant
-
- TensorFlow provides a handy function to create a Constant. In TF.NET, you can use the same function name `tf.constant` to create it. TF.NET takes the same name as python binding to the API. Naming, although this will make developers who are used to C# naming habits feel uncomfortable, but after careful consideration, I decided to give up the C# convention naming method.
-
- TensorFlow提供了一个很方便的函数用来创建一个Constant, 在TF.NET,可以使用同样的函数名`tf.constant`来创建,TF.NET采取尽可能使用和python binding一样的命名方式来对API命名,虽然这样会让习惯C#命名习惯的开发者感到不舒服,但我经过深思熟虑之后还是决定放弃C#的约定命名方式。
-
- Initialize a scalar constant:
-
- ```csharp
- var c1 = tf.constant(3); // int
- var c2 = tf.constant(1.0f); // float
- var c3 = tf.constant(2.0); // double
- var c4 = tf.constant("Big Tree"); // string
- ```
-
- Initialize a constant through ndarray:
-
- ```csharp
- // dtype=int, shape=(2, 3)
- var nd = np.array(new int[][]
- {
- new int[]{3, 1, 1},
- new int[]{2, 3, 1}
- });
- var tensor = tf.constant(nd);
- ```
-
- ##### Dive in Constant
-
- Now let's explore how constant works.
-
- 现在让我探究一下`tf.constant`是怎么工作的。
-
-
-
- ##### Other functions to create a Constant
-
- * tf.zeros
- * tf.zeros_like
- * tf.ones
- * tf.ones_like
- * tf.fill
|