You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

Rnn.Test.cs 4.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127
  1. using Microsoft.VisualStudio.TestTools.UnitTesting;
  2. using System;
  3. using System.Collections.Generic;
  4. using System.Linq;
  5. using System.Text;
  6. using System.Threading.Tasks;
  7. using Tensorflow.Common.Types;
  8. using Tensorflow.Keras.Engine;
  9. using Tensorflow.Keras.Layers.Rnn;
  10. using Tensorflow.Keras.Saving;
  11. using Tensorflow.NumPy;
  12. using Tensorflow.Train;
  13. using static Tensorflow.Binding;
  14. using static Tensorflow.KerasApi;
  15. namespace Tensorflow.Keras.UnitTest.Layers
  16. {
  17. [TestClass]
  18. public class Rnn
  19. {
  20. [TestMethod]
  21. public void SimpleRNNCell()
  22. {
  23. var cell = tf.keras.layers.SimpleRNNCell(64, dropout: 0.5f, recurrent_dropout: 0.5f);
  24. var h0 = new Tensors { tf.zeros(new Shape(4, 64)) };
  25. var x = tf.random.normal((4, 100));
  26. var (y, h1) = cell.Apply(inputs: x, states: h0);
  27. var h2 = h1;
  28. Assert.AreEqual((4, 64), y.shape);
  29. Assert.AreEqual((4, 64), h2[0].shape);
  30. }
  31. [TestMethod]
  32. public void StackedRNNCell()
  33. {
  34. var inputs = tf.ones((32, 10));
  35. var states = new Tensors { tf.zeros((32, 4)), tf.zeros((32, 5)) };
  36. var cells = new IRnnCell[] { tf.keras.layers.SimpleRNNCell(4), tf.keras.layers.SimpleRNNCell(5) };
  37. var stackedRNNCell = tf.keras.layers.StackedRNNCells(cells);
  38. var (output, state) = stackedRNNCell.Apply(inputs, states);
  39. Console.WriteLine(output);
  40. Console.WriteLine(state.shape);
  41. Assert.AreEqual((32, 5), output.shape);
  42. Assert.AreEqual((32, 4), state[0].shape);
  43. }
  44. [TestMethod]
  45. public void LSTMCell()
  46. {
  47. var inputs = tf.ones((2, 100));
  48. var states = new Tensors { tf.zeros((2, 4)), tf.zeros((2, 4)) };
  49. var rnn = tf.keras.layers.LSTMCell(4);
  50. var (output, new_states) = rnn.Apply(inputs, states);
  51. Assert.AreEqual((2, 4), output.shape);
  52. Assert.AreEqual((2, 4), new_states[0].shape);
  53. }
  54. [TestMethod]
  55. public void SimpleRNN()
  56. {
  57. //var inputs = np.arange(6 * 10 * 8).reshape((6, 10, 8)).astype(np.float32);
  58. ///*var simple_rnn = keras.layers.SimpleRNN(4);
  59. //var output = simple_rnn.Apply(inputs);
  60. //Assert.AreEqual((32, 4), output.shape);*/
  61. //var simple_rnn = tf.keras.layers.SimpleRNN(4, return_sequences: true, return_state: true);
  62. //var (whole_sequence_output, final_state) = simple_rnn.Apply(inputs);
  63. //Assert.AreEqual((6, 10, 4), whole_sequence_output.shape);
  64. //Assert.AreEqual((6, 4), final_state.shape);
  65. var inputs = keras.Input(shape: (10, 8));
  66. var x = keras.layers.SimpleRNN(4).Apply(inputs);
  67. var output = keras.layers.Dense(10).Apply(x);
  68. var model = keras.Model(inputs, output);
  69. model.summary();
  70. model.compile(keras.optimizers.Adam(), keras.losses.SparseCategoricalCrossentropy());
  71. var datax = np.ones((16, 10, 8), dtype: dtypes.float32);
  72. var datay = np.ones((16));
  73. model.fit(datax, datay, epochs: 20);
  74. }
  75. [TestMethod]
  76. public void RNNForSimpleRNNCell()
  77. {
  78. var inputs = tf.random.normal((32, 10, 8));
  79. var cell = tf.keras.layers.SimpleRNNCell(10, dropout: 0.5f, recurrent_dropout: 0.5f);
  80. var rnn = tf.keras.layers.RNN(cell: cell);
  81. var output = rnn.Apply(inputs);
  82. Assert.AreEqual((32, 10), output.shape);
  83. }
  84. [TestMethod]
  85. public void RNNForStackedRNNCell()
  86. {
  87. var inputs = tf.random.normal((32, 10, 8));
  88. var cells = new IRnnCell[] { tf.keras.layers.SimpleRNNCell(4), tf.keras.layers.SimpleRNNCell(5) };
  89. var stackedRNNCell = tf.keras.layers.StackedRNNCells(cells);
  90. var rnn = tf.keras.layers.RNN(cell: stackedRNNCell);
  91. var output = rnn.Apply(inputs);
  92. Assert.AreEqual((32, 5), output.shape);
  93. }
  94. [TestMethod]
  95. public void RNNForLSTMCell()
  96. {
  97. var inputs = tf.ones((5, 10, 8));
  98. var rnn = tf.keras.layers.RNN(tf.keras.layers.LSTMCell(4));
  99. var output = rnn.Apply(inputs);
  100. Console.WriteLine($"output: {output}");
  101. Assert.AreEqual((5, 4), output.shape);
  102. }
  103. [TestMethod]
  104. public void MyTest()
  105. {
  106. var a = tf.zeros((2, 3));
  107. var b = tf.ones_like(a);
  108. var c = tf.ones((3,4));
  109. var d = new Tensors { a, b, c };
  110. var (A, BC) = d;
  111. Console.WriteLine($"A:{A}");
  112. Console.WriteLine($"BC:{BC}");
  113. }
  114. }
  115. }