You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

KMeansClustering.cs 4.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116
  1. using NumSharp;
  2. using System;
  3. using System.Collections.Generic;
  4. using System.Diagnostics;
  5. using System.Linq;
  6. using System.Text;
  7. using Tensorflow;
  8. using Tensorflow.Clustering;
  9. using TensorFlowNET.Examples.Utility;
  10. namespace TensorFlowNET.Examples
  11. {
  12. /// <summary>
  13. /// Implement K-Means algorithm with TensorFlow.NET, and apply it to classify
  14. /// handwritten digit images.
  15. /// https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/kmeans.py
  16. /// </summary>
  17. public class KMeansClustering : Python, IExample
  18. {
  19. public int Priority => 8;
  20. public bool Enabled { get; set; } = true;
  21. public string Name => "K-means Clustering";
  22. public int? train_size = null;
  23. public int validation_size = 5000;
  24. public int? test_size = null;
  25. public int batch_size = 1024; // The number of samples per batch
  26. Datasets mnist;
  27. NDArray full_data_x;
  28. int num_steps = 10; // Total steps to train
  29. int k = 25; // The number of clusters
  30. int num_classes = 10; // The 10 digits
  31. int num_features = 784; // Each image is 28x28 pixels
  32. public bool Run()
  33. {
  34. PrepareData();
  35. var graph = tf.Graph().as_default();
  36. tf.train.import_meta_graph("kmeans.meta");
  37. // Input images
  38. var X = graph.get_operation_by_name("Placeholder").output; // tf.placeholder(tf.float32, shape: new TensorShape(-1, num_features));
  39. // Labels (for assigning a label to a centroid and testing)
  40. var Y = graph.get_operation_by_name("Placeholder_1").output; // tf.placeholder(tf.float32, shape: new TensorShape(-1, num_classes));
  41. // K-Means Parameters
  42. //var kmeans = new KMeans(X, k, distance_metric: KMeans.COSINE_DISTANCE, use_mini_batch: true);
  43. // Build KMeans graph
  44. //var training_graph = kmeans.training_graph();
  45. var init_vars = tf.global_variables_initializer();
  46. Tensor init_op = graph.get_operation_by_name("cond/Merge");
  47. var train_op = graph.get_operation_by_name("group_deps");
  48. Tensor avg_distance = graph.get_operation_by_name("Mean");
  49. Tensor cluster_idx = graph.get_operation_by_name("Squeeze_1");
  50. with(tf.Session(graph), sess =>
  51. {
  52. sess.run(init_vars, new FeedItem(X, full_data_x));
  53. sess.run(init_op, new FeedItem(X, full_data_x));
  54. // Training
  55. NDArray result = null;
  56. var sw = new Stopwatch();
  57. foreach (var i in range(1, num_steps + 1))
  58. {
  59. sw.Start();
  60. result = sess.run(new ITensorOrOperation[] { train_op, avg_distance, cluster_idx }, new FeedItem(X, full_data_x));
  61. sw.Stop();
  62. if (i % 5 == 0 || i == 1)
  63. print($"Step {i}, Avg Distance: {result[1]} Elapse: {sw.ElapsedMilliseconds}ms");
  64. sw.Reset();
  65. }
  66. var idx = result[2].Data<int>();
  67. // Assign a label to each centroid
  68. // Count total number of labels per centroid, using the label of each training
  69. // sample to their closest centroid (given by 'idx')
  70. var counts = np.zeros((k, num_classes), np.float32);
  71. sw.Start();
  72. foreach (var i in range(idx.Length))
  73. {
  74. var x = mnist.train.labels[i];
  75. counts[idx[i]] += x;
  76. }
  77. sw.Stop();
  78. print($"Assign a label to each centroid took {sw.ElapsedMilliseconds}ms");
  79. // Assign the most frequent label to the centroid
  80. var labels_map_array = np.argmax(counts, 1);
  81. var labels_map = tf.convert_to_tensor(labels_map_array);
  82. // Evaluation ops
  83. // Lookup: centroid_id -> label
  84. });
  85. return false;
  86. }
  87. public void PrepareData()
  88. {
  89. mnist = MnistDataSet.read_data_sets("mnist", one_hot: true, train_size: train_size, validation_size:validation_size, test_size:test_size);
  90. full_data_x = mnist.train.images;
  91. }
  92. }
  93. }

tensorflow框架的.NET版本,提供了丰富的特性和API,可以借此很方便地在.NET平台下搭建深度学习训练与推理流程。