You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

MultiInputModelTest.cs 2.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
  1. using Microsoft.VisualStudio.TestTools.UnitTesting;
  2. using System;
  3. using Tensorflow.Keras.Optimizers;
  4. using Tensorflow.NumPy;
  5. using static Tensorflow.KerasApi;
  6. namespace Tensorflow.Keras.UnitTest
  7. {
  8. [TestClass]
  9. public class MultiInputModelTest
  10. {
  11. [TestMethod]
  12. public void LeNetModel()
  13. {
  14. var inputs = keras.Input((28, 28, 1));
  15. var conv1 = keras.layers.Conv2D(16, (3, 3), activation: "relu", padding: "same").Apply(inputs);
  16. var pool1 = keras.layers.MaxPooling2D((2, 2), 2).Apply(conv1);
  17. var conv2 = keras.layers.Conv2D(32, (3, 3), activation: "relu", padding: "same").Apply(pool1);
  18. var pool2 = keras.layers.MaxPooling2D((2, 2), 2).Apply(conv2);
  19. var flat1 = keras.layers.Flatten().Apply(pool2);
  20. var inputs_2 = keras.Input((28, 28, 1));
  21. var conv1_2 = keras.layers.Conv2D(16, (3, 3), activation: "relu", padding: "same").Apply(inputs_2);
  22. var pool1_2 = keras.layers.MaxPooling2D((4, 4), 4).Apply(conv1_2);
  23. var conv2_2 = keras.layers.Conv2D(32, (1, 1), activation: "relu", padding: "same").Apply(pool1_2);
  24. var pool2_2 = keras.layers.MaxPooling2D((2, 2), 2).Apply(conv2_2);
  25. var flat1_2 = keras.layers.Flatten().Apply(pool2_2);
  26. var concat = keras.layers.Concatenate().Apply((flat1, flat1_2));
  27. var dense1 = keras.layers.Dense(512, activation: "relu").Apply(concat);
  28. var dense2 = keras.layers.Dense(128, activation: "relu").Apply(dense1);
  29. var dense3 = keras.layers.Dense(10, activation: "relu").Apply(dense2);
  30. var output = keras.layers.Softmax(-1).Apply(dense3);
  31. var model = keras.Model((inputs, inputs_2), output);
  32. model.summary();
  33. var data_loader = new MnistModelLoader();
  34. var dataset = data_loader.LoadAsync(new ModelLoadSetting
  35. {
  36. TrainDir = "mnist",
  37. OneHot = false,
  38. ValidationSize = 59900,
  39. }).Result;
  40. var loss = keras.losses.SparseCategoricalCrossentropy();
  41. var optimizer = new Adam(0.001f);
  42. model.compile(optimizer, loss, new string[] { "accuracy" });
  43. NDArray x1 = np.reshape(dataset.Train.Data, (dataset.Train.Data.shape[0], 28, 28, 1));
  44. NDArray x2 = x1;
  45. var x = new NDArray[] { x1, x2 };
  46. model.fit(x, dataset.Train.Labels, batch_size: 8, epochs: 3);
  47. x1 = np.ones((1, 28, 28, 1), TF_DataType.TF_FLOAT);
  48. x2 = np.zeros((1, 28, 28, 1), TF_DataType.TF_FLOAT);
  49. var pred = model.predict((x1, x2));
  50. Console.WriteLine(pred);
  51. }
  52. }
  53. }