|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201 |
- using Microsoft.VisualStudio.TestTools.UnitTesting;
- using Tensorflow.NumPy;
- using System;
- using System.Collections.Generic;
- using System.Linq;
- using Tensorflow;
- using static Tensorflow.Binding;
- using Tensorflow.Keras.UnitTest;
-
- namespace TensorFlowNET.UnitTest.Basics
- {
- [TestClass]
- public class ComplexTest : EagerModeTestBase
- {
- // Tests for Complex128
-
- [TestMethod]
- public void complex128_basic()
- {
- double[] d_real = new double[] { 1.0, 2.0, 3.0, 4.0 };
- double[] d_imag = new double[] { -1.0, -3.0, 5.0, 7.0 };
-
- Tensor t_real = tf.constant(d_real, dtype:TF_DataType.TF_DOUBLE);
- Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_DOUBLE);
-
- Tensor t_complex = tf.complex(t_real, t_imag);
-
- Tensor t_real_result = tf.math.real(t_complex);
- Tensor t_imag_result = tf.math.imag(t_complex);
-
- NDArray n_real_result = t_real_result.numpy();
- NDArray n_imag_result = t_imag_result.numpy();
-
- double[] d_real_result =n_real_result.ToArray<double>();
- double[] d_imag_result = n_imag_result.ToArray<double>();
-
- Assert.IsTrue(base.Equal(d_real_result, d_real));
- Assert.IsTrue(base.Equal(d_imag_result, d_imag));
- }
- [TestMethod]
- public void complex128_abs()
- {
- tf.enable_eager_execution();
-
- double[] d_real = new double[] { -3.0, -5.0, 8.0, 7.0 };
- double[] d_imag = new double[] { -4.0, 12.0, -15.0, 24.0 };
-
- double[] d_abs = new double[] { 5.0, 13.0, 17.0, 25.0 };
-
- Tensor t_real = tf.constant(d_real, dtype: TF_DataType.TF_DOUBLE);
- Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_DOUBLE);
-
- Tensor t_complex = tf.complex(t_real, t_imag);
-
- Tensor t_abs_result = tf.abs(t_complex);
-
- double[] d_abs_result = t_abs_result.numpy().ToArray<double>();
- Assert.IsTrue(base.Equal(d_abs_result, d_abs));
- }
- [TestMethod]
- public void complex128_conj()
- {
- double[] d_real = new double[] { -3.0, -5.0, 8.0, 7.0 };
- double[] d_imag = new double[] { -4.0, 12.0, -15.0, 24.0 };
-
- double[] d_real_expected = new double[] { -3.0, -5.0, 8.0, 7.0 };
- double[] d_imag_expected = new double[] { 4.0, -12.0, 15.0, -24.0 };
-
- Tensor t_real = tf.constant(d_real, dtype: TF_DataType.TF_DOUBLE);
- Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_DOUBLE);
-
- Tensor t_complex = tf.complex(t_real, t_imag, TF_DataType.TF_COMPLEX128);
-
- Tensor t_result = tf.math.conj(t_complex);
-
- NDArray n_real_result = tf.math.real(t_result).numpy();
- NDArray n_imag_result = tf.math.imag(t_result).numpy();
-
- double[] d_real_result = n_real_result.ToArray<double>();
- double[] d_imag_result = n_imag_result.ToArray<double>();
-
- Assert.IsTrue(base.Equal(d_real_result, d_real_expected));
- Assert.IsTrue(base.Equal(d_imag_result, d_imag_expected));
- }
- [TestMethod]
- public void complex128_angle()
- {
- double[] d_real = new double[] { 0.0, 1.0, -1.0, 0.0 };
- double[] d_imag = new double[] { 1.0, 0.0, -2.0, -3.0 };
-
- double[] d_expected = new double[] { 1.5707963267948966, 0, -2.0344439357957027, -1.5707963267948966 };
-
- Tensor t_real = tf.constant(d_real, dtype: TF_DataType.TF_DOUBLE);
- Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_DOUBLE);
-
- Tensor t_complex = tf.complex(t_real, t_imag, TF_DataType.TF_COMPLEX128);
-
- Tensor t_result = tf.math.angle(t_complex);
-
- NDArray n_result = t_result.numpy();
-
- double[] d_result = n_result.ToArray<double>();
-
- Assert.IsTrue(base.Equal(d_result, d_expected));
- }
-
- // Tests for Complex64
- [TestMethod]
- public void complex64_basic()
- {
- tf.init_scope();
- float[] d_real = new float[] { 1.0f, 2.0f, 3.0f, 4.0f };
- float[] d_imag = new float[] { -1.0f, -3.0f, 5.0f, 7.0f };
-
- Tensor t_real = tf.constant(d_real, dtype: TF_DataType.TF_FLOAT);
- Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_FLOAT);
-
- Tensor t_complex = tf.complex(t_real, t_imag);
-
- Tensor t_real_result = tf.math.real(t_complex);
- Tensor t_imag_result = tf.math.imag(t_complex);
-
- // Convert the EagerTensors to NumPy arrays directly
- float[] d_real_result = t_real_result.numpy().ToArray<float>();
- float[] d_imag_result = t_imag_result.numpy().ToArray<float>();
-
- Assert.IsTrue(base.Equal(d_real_result, d_real));
- Assert.IsTrue(base.Equal(d_imag_result, d_imag));
- }
- [TestMethod]
- public void complex64_abs()
- {
- tf.enable_eager_execution();
-
- float[] d_real = new float[] { -3.0f, -5.0f, 8.0f, 7.0f };
- float[] d_imag = new float[] { -4.0f, 12.0f, -15.0f, 24.0f };
-
- float[] d_abs = new float[] { 5.0f, 13.0f, 17.0f, 25.0f };
-
- Tensor t_real = tf.constant(d_real, dtype: TF_DataType.TF_FLOAT);
- Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_FLOAT);
-
- Tensor t_complex = tf.complex(t_real, t_imag, TF_DataType.TF_COMPLEX64);
-
- Tensor t_abs_result = tf.abs(t_complex);
-
- NDArray n_abs_result = t_abs_result.numpy();
-
- float[] d_abs_result = n_abs_result.ToArray<float>();
- Assert.IsTrue(base.Equal(d_abs_result, d_abs));
-
- }
- [TestMethod]
- public void complex64_conj()
- {
- float[] d_real = new float[] { -3.0f, -5.0f, 8.0f, 7.0f };
- float[] d_imag = new float[] { -4.0f, 12.0f, -15.0f, 24.0f };
-
- float[] d_real_expected = new float[] { -3.0f, -5.0f, 8.0f, 7.0f };
- float[] d_imag_expected = new float[] { 4.0f, -12.0f, 15.0f, -24.0f };
-
- Tensor t_real = tf.constant(d_real, dtype: TF_DataType.TF_FLOAT);
- Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_FLOAT);
-
- Tensor t_complex = tf.complex(t_real, t_imag, TF_DataType.TF_COMPLEX64);
-
- Tensor t_result = tf.math.conj(t_complex);
-
- NDArray n_real_result = tf.math.real(t_result).numpy();
- NDArray n_imag_result = tf.math.imag(t_result).numpy();
-
- float[] d_real_result = n_real_result.ToArray<float>();
- float[] d_imag_result = n_imag_result.ToArray<float>();
-
- Assert.IsTrue(base.Equal(d_real_result, d_real_expected));
- Assert.IsTrue(base.Equal(d_imag_result, d_imag_expected));
-
- }
- [TestMethod]
- public void complex64_angle()
- {
- float[] d_real = new float[] { 0.0f, 1.0f, -1.0f, 0.0f };
- float[] d_imag = new float[] { 1.0f, 0.0f, -2.0f, -3.0f };
-
- float[] d_expected = new float[] { 1.5707964f, 0f, -2.0344439f, -1.5707964f };
-
- Tensor t_real = tf.constant(d_real, dtype: TF_DataType.TF_FLOAT);
- Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_FLOAT);
-
- Tensor t_complex = tf.complex(t_real, t_imag, TF_DataType.TF_COMPLEX64);
-
- Tensor t_result = tf.math.angle(t_complex);
-
- NDArray n_result = t_result.numpy();
-
- float[] d_result = n_result.ToArray<float>();
-
- Assert.IsTrue(base.Equal(d_result, d_expected));
- }
- }
- }
|