You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

LogisticRegression.cs 5.9 kB

6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148
  1. using Newtonsoft.Json;
  2. using NumSharp.Core;
  3. using System;
  4. using System.Collections.Generic;
  5. using System.IO;
  6. using System.Linq;
  7. using System.Text;
  8. using Tensorflow;
  9. using TensorFlowNET.Examples.Utility;
  10. namespace TensorFlowNET.Examples
  11. {
  12. /// <summary>
  13. /// A logistic regression learning algorithm example using TensorFlow library.
  14. /// This example is using the MNIST database of handwritten digits
  15. /// https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/logistic_regression.py
  16. /// </summary>
  17. public class LogisticRegression : Python, IExample
  18. {
  19. public int Priority => 4;
  20. public bool Enabled => true;
  21. public string Name => "Logistic Regression";
  22. private float learning_rate = 0.01f;
  23. private int training_epochs = 10;
  24. private int batch_size = 100;
  25. private int display_step = 1;
  26. Datasets mnist;
  27. public bool Run()
  28. {
  29. PrepareData();
  30. // tf Graph Input
  31. var x = tf.placeholder(tf.float32, new TensorShape(-1, 784)); // mnist data image of shape 28*28=784
  32. var y = tf.placeholder(tf.float32, new TensorShape(-1, 10)); // 0-9 digits recognition => 10 classes
  33. // Set model weights
  34. var W = tf.Variable(tf.zeros(new Shape(784, 10)));
  35. var b = tf.Variable(tf.zeros(new Shape(10)));
  36. // Construct model
  37. var pred = tf.nn.softmax(tf.matmul(x, W) + b); // Softmax
  38. // Minimize error using cross entropy
  39. var cost = tf.reduce_mean(-tf.reduce_sum(y * tf.log(pred), reduction_indices: 1));
  40. // Gradient Descent
  41. var optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost);
  42. // Initialize the variables (i.e. assign their default value)
  43. var init = tf.global_variables_initializer();
  44. return with(tf.Session(), sess =>
  45. {
  46. // Run the initializer
  47. sess.run(init);
  48. // Training cycle
  49. foreach (var epoch in range(training_epochs))
  50. {
  51. var avg_cost = 0.0f;
  52. var total_batch = mnist.train.num_examples / batch_size;
  53. // Loop over all batches
  54. foreach (var i in range(total_batch))
  55. {
  56. var (batch_xs, batch_ys) = mnist.train.next_batch(batch_size);
  57. // Run optimization op (backprop) and cost op (to get loss value)
  58. var result = sess.run(new object[] { optimizer, cost },
  59. new FeedItem(x, batch_xs),
  60. new FeedItem(y, batch_ys));
  61. var c = (float)result[1];
  62. // Compute average loss
  63. avg_cost += c / total_batch;
  64. }
  65. // Display logs per epoch step
  66. if ((epoch + 1) % display_step == 0)
  67. print($"Epoch: {(epoch + 1).ToString("D4")} cost= {avg_cost.ToString("G9")}");
  68. }
  69. print("Optimization Finished!");
  70. // SaveModel(sess);
  71. // Test model
  72. var correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1));
  73. // Calculate accuracy
  74. var accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32));
  75. float acc = accuracy.eval(new FeedItem(x, mnist.test.images), new FeedItem(y, mnist.test.labels));
  76. print($"Accuracy: {acc.ToString("F4")}");
  77. return acc > 0.9;
  78. });
  79. }
  80. public void PrepareData()
  81. {
  82. mnist = MnistDataSet.read_data_sets("mnist", one_hot: true);
  83. }
  84. public void SaveModel(Session sess)
  85. {
  86. var saver = tf.train.Saver();
  87. var save_path = saver.save(sess, "logistic_regression/model.ckpt");
  88. tf.train.write_graph(sess.graph, "logistic_regression", "model.pbtxt", as_text: true);
  89. FreezeGraph.freeze_graph(input_graph: "logistic_regression/model.pbtxt",
  90. input_saver: "",
  91. input_binary: false,
  92. input_checkpoint: "logistic_regression/model.ckpt",
  93. output_node_names: "Softmax",
  94. restore_op_name: "save/restore_all",
  95. filename_tensor_name: "save/Const:0",
  96. output_graph: "logistic_regression/model.pb",
  97. clear_devices: true,
  98. initializer_nodes: "");
  99. }
  100. public void Predict()
  101. {
  102. var graph = new Graph().as_default();
  103. graph.Import(Path.Join("logistic_regression", "model.pb"));
  104. with(tf.Session(graph), sess =>
  105. {
  106. // restoring the model
  107. // var saver = tf.train.import_meta_graph("logistic_regression/tensorflowModel.ckpt.meta");
  108. // saver.restore(sess, tf.train.latest_checkpoint('logistic_regression'));
  109. var pred = graph.OperationByName("Softmax");
  110. var output = pred.outputs[0];
  111. var x = graph.OperationByName("Placeholder");
  112. var input = x.outputs[0];
  113. // predict
  114. var (batch_xs, batch_ys) = mnist.train.next_batch(10);
  115. var results = sess.run(output, new FeedItem(input, batch_xs[np.arange(1)]));
  116. if (results.argmax() == (batch_ys[0] as NDArray).argmax())
  117. print("predicted OK!");
  118. else
  119. throw new ValueError("predict error, maybe 90% accuracy");
  120. });
  121. }
  122. }
  123. }

tensorflow框架的.NET版本,提供了丰富的特性和API,可以借此很方便地在.NET平台下搭建深度学习训练与推理流程。