You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

NeuralNetXor.cs 3.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899
  1. using System;
  2. using System.Collections.Generic;
  3. using System.Text;
  4. using NumSharp;
  5. using Tensorflow;
  6. namespace TensorFlowNET.Examples
  7. {
  8. /// <summary>
  9. /// Simple vanilla neural net solving the famous XOR problem
  10. /// https://github.com/amygdala/tensorflow-workshop/blob/master/workshop_sections/getting_started/xor/README.md
  11. /// </summary>
  12. public class NeuralNetXor : Python, IExample
  13. {
  14. public int Priority => 2;
  15. public bool Enabled { get; set; } = true;
  16. public string Name => "NN XOR";
  17. public int num_steps = 5000;
  18. private NDArray data;
  19. private (Operation, Tensor, RefVariable) make_graph(Tensor features,Tensor labels, int num_hidden = 8)
  20. {
  21. var stddev = 1 / Math.Sqrt(2);
  22. var hidden_weights = tf.Variable(tf.truncated_normal(new int []{2, num_hidden}, stddev: (float) stddev ));
  23. // Shape [4, num_hidden]
  24. var hidden_activations = tf.nn.relu(tf.matmul(features, hidden_weights));
  25. var output_weights = tf.Variable(tf.truncated_normal(
  26. new[] {num_hidden, 1},
  27. stddev: (float) (1 / Math.Sqrt(num_hidden))
  28. ));
  29. // Shape [4, 1]
  30. var logits = tf.matmul(hidden_activations, output_weights);
  31. // Shape [4]
  32. var predictions = tf.sigmoid(tf.squeeze(logits));
  33. var loss = tf.reduce_mean(tf.square(predictions - tf.cast(labels, tf.float32)));
  34. var gs = tf.Variable(0, trainable: false);
  35. var train_op = tf.train.GradientDescentOptimizer(0.2f).minimize(loss, global_step: gs);
  36. return (train_op, loss, gs);
  37. }
  38. public bool Run()
  39. {
  40. PrepareData();
  41. var graph = tf.Graph().as_default();
  42. var features = tf.placeholder(tf.float32, new TensorShape(4, 2));
  43. var labels = tf.placeholder(tf.int32, new TensorShape(4));
  44. var (train_op, loss, gs) = make_graph(features, labels);
  45. var init = tf.global_variables_initializer();
  46. // Start tf session
  47. with(tf.Session(graph), sess =>
  48. {
  49. sess.run(init);
  50. var step = 0;
  51. var y_ = np.array(new int[] { 1, 0, 0, 1 }, dtype: np.int32);
  52. float loss_value = 0;
  53. while (step < num_steps)
  54. {
  55. // original python:
  56. //_, step, loss_value = sess.run(
  57. // [train_op, gs, loss],
  58. // feed_dict={features: xy, labels: y_}
  59. // )
  60. loss_value = sess.run(loss, new FeedItem(features, data), new FeedItem(labels, y_));
  61. step++;
  62. if (step%1000==0)
  63. Console.WriteLine($"Step {step} loss: {loss_value}");
  64. }
  65. Console.WriteLine($"Final loss: {loss_value}");
  66. });
  67. return true;
  68. }
  69. public void PrepareData()
  70. {
  71. data = new float[,]
  72. {
  73. {1, 0 },
  74. {1, 1 },
  75. {0, 0 },
  76. {0, 1 }
  77. };
  78. }
  79. }
  80. }

tensorflow框架的.NET版本,提供了丰富的特性和API,可以借此很方便地在.NET平台下搭建深度学习训练与推理流程。