You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ObjectDetection.cs 5.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148
  1. using Newtonsoft.Json;
  2. using NumSharp;
  3. using System;
  4. using System.Collections.Generic;
  5. using System.IO;
  6. using System.Text;
  7. using Tensorflow;
  8. using TensorFlowNET.Examples.Utility;
  9. using System.Drawing;
  10. using System.Drawing.Drawing2D;
  11. using System.Linq;
  12. namespace TensorFlowNET.Examples
  13. {
  14. public class ObjectDetection : Python, IExample
  15. {
  16. public int Priority => 11;
  17. public bool Enabled { get; set; } = true;
  18. public string Name => "Object Detection";
  19. public bool ImportGraph { get; set; } = false;
  20. public float MIN_SCORE = 0.5f;
  21. string modelDir = "ssd_mobilenet_v1_coco_2018_01_28";
  22. string imageDir = "images";
  23. string pbFile = "frozen_inference_graph.pb";
  24. string labelFile = "mscoco_label_map.pbtxt";
  25. string picFile = "input.jpg";
  26. public bool Run()
  27. {
  28. PrepareData();
  29. // read in the input image
  30. var imgArr = ReadTensorFromImageFile(Path.Join(imageDir, "input.jpg"));
  31. var graph = new Graph().as_default();
  32. graph.Import(Path.Join(modelDir, pbFile));
  33. Tensor tensorNum = graph.OperationByName("num_detections");
  34. Tensor tensorBoxes = graph.OperationByName("detection_boxes");
  35. Tensor tensorScores = graph.OperationByName("detection_scores");
  36. Tensor tensorClasses = graph.OperationByName("detection_classes");
  37. Tensor imgTensor = graph.OperationByName("image_tensor");
  38. Tensor[] outTensorArr = new Tensor[] { tensorNum, tensorBoxes, tensorScores, tensorClasses };
  39. with(tf.Session(graph), sess =>
  40. {
  41. var results = sess.run(outTensorArr, new FeedItem(imgTensor, imgArr));
  42. NDArray[] resultArr = results.Data<NDArray>();
  43. buildOutputImage(resultArr);
  44. });
  45. return true;
  46. }
  47. public void PrepareData()
  48. {
  49. // get model file
  50. string url = "http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2018_01_28.tar.gz";
  51. Web.Download(url, modelDir, "ssd_mobilenet_v1_coco.tar.gz");
  52. Compress.ExtractTGZ(Path.Join(modelDir, "ssd_mobilenet_v1_coco.tar.gz"), "./");
  53. // download sample picture
  54. url = $"https://github.com/tensorflow/models/raw/master/research/object_detection/test_images/image2.jpg";
  55. Web.Download(url, imageDir, "input.jpg");
  56. // download the pbtxt file
  57. url = $"https://raw.githubusercontent.com/tensorflow/models/master/research/object_detection/data/mscoco_label_map.pbtxt";
  58. Web.Download(url, modelDir, "mscoco_label_map.pbtxt");
  59. }
  60. private NDArray ReadTensorFromImageFile(string file_name)
  61. {
  62. return with(tf.Graph().as_default(), graph =>
  63. {
  64. var file_reader = tf.read_file(file_name, "file_reader");
  65. var decodeJpeg = tf.image.decode_jpeg(file_reader, channels: 3, name: "DecodeJpeg");
  66. var casted = tf.cast(decodeJpeg, TF_DataType.TF_UINT8);
  67. var dims_expander = tf.expand_dims(casted, 0);
  68. return with(tf.Session(graph), sess => sess.run(dims_expander));
  69. });
  70. }
  71. private void buildOutputImage(NDArray[] resultArr)
  72. {
  73. // get pbtxt items
  74. PbtxtItems pbTxtItems = PbtxtParser.ParsePbtxtFile(Path.Join(modelDir, "mscoco_label_map.pbtxt"));
  75. // get bitmap
  76. Bitmap bitmap = new Bitmap(Path.Join(imageDir, "input.jpg"));
  77. float[] scores = resultArr[2].Data<float>();
  78. for (int i=0; i<scores.Length; i++)
  79. {
  80. float score = scores[i];
  81. if (score > MIN_SCORE)
  82. {
  83. float[] boxes = resultArr[1].Data<float>();
  84. float top = boxes[i * 4] * bitmap.Height;
  85. float left = boxes[i * 4 + 1] * bitmap.Width;
  86. float bottom = boxes[i * 4 + 2] * bitmap.Height;
  87. float right = boxes[i * 4 + 3] * bitmap.Width;
  88. Rectangle rect = new Rectangle()
  89. {
  90. X = (int)left,
  91. Y = (int)top,
  92. Width = (int)(right - left),
  93. Height = (int)(bottom - top)
  94. };
  95. float[] ids = resultArr[3].Data<float>();
  96. string name = pbTxtItems.items.Where(w => w.id == (int)ids[i]).Select(s=>s.display_name).FirstOrDefault();
  97. drawObjectOnBitmap(bitmap, rect, score, name);
  98. }
  99. }
  100. string path = Path.Join(imageDir, "output.jpg");
  101. bitmap.Save(path);
  102. Console.WriteLine($"Processed image is saved as {path}");
  103. }
  104. private void drawObjectOnBitmap(Bitmap bmp, Rectangle rect, float score, string name)
  105. {
  106. using (Graphics graphic = Graphics.FromImage(bmp))
  107. {
  108. graphic.SmoothingMode = SmoothingMode.AntiAlias;
  109. using (Pen pen = new Pen(Color.Red, 2))
  110. {
  111. graphic.DrawRectangle(pen, rect);
  112. Point p = new Point(rect.Right + 5, rect.Top + 5);
  113. string text = string.Format("{0}:{1}%", name, (int)(score * 100));
  114. graphic.DrawString(text, new Font("Verdana", 8), Brushes.Red, p);
  115. }
  116. }
  117. }
  118. }
  119. }

tensorflow框架的.NET版本,提供了丰富的特性和API,可以借此很方便地在.NET平台下搭建深度学习训练与推理流程。